A reaction having equal energies of activation for forward and reverse reactions has
1. S = 0
2. G = 0
3. H = 0
4. H = G = S = 0
For the reaction,
N2O5(g) → 2NO2(g) + \(\frac{1}{2}\)O2(g)
the value of the rate of disappearance of is given as . The rate of formation of is given respectively as:
1. 6.25 x 10-3 mol L-1s-1 and 6.25 x 10-3 mol L-1s-1
2. 1.25 x 10-2 mol L-1s-1 and 3.125 x 10-3 mol L-1s-1
3. 6.25 x 10-3 mol L-1s-1 and 3.125 x 10-3 mol L-1s-1
4. 1.25 x 10-2 mol L-1s-1 and 6.25 x 10-3 mol L-1s-1
For an endothermic reaction, energy of activation is Ea and enthalpy of reaction is H (both of these in kJ/mol). Minimum value of Ea will be
1. Less than H
2. Equal to H
3. More than H
4. Equal to zero
Half-life period of a first order reaction is 1386s. The specific rate constant of the reaction
is
1. 5.0 x 10-3s-1
2. 0.5 x 10-2s-1
3. 0.5 x 10-3s-1
4. 5.0 x 10-2s-1
For the reaction A+B products, it is observed that
(1) | On doubling the initial concentration of A only, the rate of reaction is also doubled and |
(2) | On doubling the initial concentrations of both A and B, there is a change by a factor of 8 in that rate of the reaction |
The rate of this reaction is, given by
1. rate = k[A]2[B]
2. rate = k[A][B]2
3. rate = k[A]2[B]2
4. rate = k[A][B]
In the reaction, BrO-3(aq) + 5Br-(aq) + 6H+ 3Br2(l) + 2H2O(l)
The rate of appearance of bromine (Br2) is related to rate of disappearance of bromide
ions as following
1. d[Br2]/dt = -(3/5)d[Br-]/dt
2. d[Br2]/dt = (5/3)d[Br-]/dt
3. d[Br2]/dt = -(5/3)d[Br-]/dt
4. d[Br2]/dt = (3/5)d[Br-]/dt
The rate constants k1 and k2 for two different reactions are 1016 e-2000/T and 1015 e-1000/T , respectively. The temperature at which k1=k2 is:
(1) 1000 K
(2)
(3) 2000K
(4)
The bromination of acetone that occurs in acid solution is represented by this equation.
These kinetic data were obtained for given reaction concentrations.
Initial concentrations, M
0.30 0.05 0.05
0.30 0.10 0.05
0.30 0.10 0.10
0.40 0.05 0.20
Initial rate, disappearance of Br2, Ms-1
5.7X10-5
5.7X10-5
1.2X10-4
3.1X10-4
Based on these data, the rate equation is
1. Rate = k [CH3COCH3] [H+]
2. Rate = k [CH=COCH3][Br2]
3. Rate = k [CH3COCH3][Br2][H+]2
4. Rate = k [CH3COCH3][Br2][H+]
In a first order reaction A B, if k is rate constant and initial concentration of the reactant A is 0.5 M then the half-life is :
(1)
(2)
(3)
(4)
If a first-order reaction reaches 60% completion within 60 minutes, approximately how much time would it take for the same reaction to reach 50% completion? (log 4=0.60, log 5=0.69)
1. 50 min
2. 45 min
3. 60 min
4. 30 min