A charged ball \(B\) hangs from a silk thread \(S,\) which makes an angle \(\theta\) with a large charged conducting sheet \(P,\) as shown in the figure. The surface charge density \(\sigma\) of the sheet is proportional to:
1. \(\sin\theta\)
2. \(\tan\theta\)
3. \(\cos\theta\)
4. \(\cot\theta\)
Two-point charges +8q and –2q are located at x = 0 and x = L respectively. The location of a point on the x-axis at which the net electric field due to these two point charges is zero is
1. 8 L
2. 4 L
3. 2 L
4.
Three infinitely long charge sheets are placed as shown in the figure. The electric field at point P is
(1)
(2)
(3)
(4)
Four-point +ve charges of the same magnitude (Q) are placed at four corners of a rigid square frame as shown in the figure. The plane of the frame is perpendicular to Z-axis. If a –ve point charge is placed at a distance z away from the above frame (z<<L) then
1. – ve charge oscillates along the Z-axis.
2. It moves away from the frame.
3. It moves slowly towards the frame and stays in the plane of the frame.
4. It passes through the frame only once.
A cylinder of radius R and length L is placed in a uniform electric field E parallel to the cylinder axis. The total flux for the surface of the cylinder is given by
(1)
(2)
(3)
(4) Zero
Electric field at a point varies as r0 for
(1) An electric dipole
(2) A point charge
(3) A plane infinite sheet of charge
(4) A line charge of infinite length
Total electric flux coming out of a unit positive charge put in air is
(1)
(2)
(3)
(4)
A cube of side l is placed in a uniform field E, where . The net electric flux through the cube is
(1) Zero
(2) l2E
(3) 4l2E
(4) 6l2E
Eight dipoles of charges of magnitude \((e)\) are placed inside a cube. The total electric flux coming out of the cube will be:
1. \(\frac{8e}{\epsilon _{0}}\)
2. \(\frac{16e}{\epsilon _{0}}\)
3. \(\frac{e}{\epsilon _{0}}\)
4. zero