A transformer has 100 turns in the primary coil and carries 8 A current. If input power is one kilowatt, the number of turns required in the secondary coil to have 500V output will be 

(1) 100

(2) 200

(3) 400

(4) 300

Subtopic:  Transformer |
 86%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A copper rod of length l is rotated about one end perpendicular to the magnetic field B with constant angular velocity ω. The induced e.m.f. between the two ends is 

(1) 12Bωl2

(2) 34Bωl2

(3) Bωl2

(4) 2Bωl2

Subtopic:  Motional emf |
 89%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two conducting circular loops of radii \(R_1\) and \(R_2\) are placed in the same plane with their centres coinciding. If \(R_1>>R_2\), the mutual inductance \(M\) between them will be directly proportional to:

1. \(\dfrac{R_1}{R_2}\) 2. \(\dfrac{R_2}{R_1}\)
3. \(\dfrac{R^2_1}{R_2}\) 4. \(\dfrac{R^2_2}{R_1}\)
Subtopic:  Mutual Inductance |
 63%
From NCERT
NEET - 2021
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A thin semicircular conducting ring of radius \(R\) is falling with its plane vertical in a horizontal magnetic induction \(B\). At the position \(MNQ\), the speed of the ring is \(v\) and the potential difference developed across the ring is:

          

1.  Zero
2. \(B v \pi R^2 / 2\) and \(M\) is at the higher potential 
3. \(2 R B v\) and \(M\) is at the higher potential
4. \(2RBv\) and \(Q\)  is at the higher potential
Subtopic:  Motional emf |
 66%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Consider the situation shown in the figure. The wire AB is sliding on the fixed rails with a constant velocity. If the wire AB is replaced by semicircular wire, the magnitude of the induced current will 

(1) Increase

(2) Remain the same

(3) Decrease

(4) Increase or decrease depending on whether the semicircle bulges towards the resistance or away from it

Subtopic:  Motional emf |
 68%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A circular loop of radius R carrying current I lies in the x-y plane with its centre at the origin. The total magnetic flux through the x-y plane is 

(1) Directly proportional to I

(2) Directly proportional to R

(3) Directly proportional to R2

(4) Zero

Subtopic:  Magnetic Flux |
 53%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A small square loop of wire of side l is placed inside a large square loop of wire of side L (L > l). The loop are coplanar and their centre coincide. The mutual inductance of the system is proportional to 

(1) l / L

(2) l2 / L

(3) L/l

(4) L2/l

Subtopic:  Mutual Inductance |
 79%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A uniform but time-varying magnetic field B(t) exists in a circular region of radius a and is directed into the plane of the paper, as shown. The magnitude of the induced electric field at point P at a distance r from the centre of the circular region 

(1) Is zero

(2) Decreases as 1r

(3) Increases as r

(4) Decreases as 1r2

Subtopic:  Faraday's Law & Lenz Law |
 59%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A coil of wire having finite inductance and resistance has a conducting ring placed coaxially within it. The coil is connected to a battery at time t = 0 so that a time-dependent current I1(t) starts flowing through the coil. If I2(t) is the current induced in the ring and B(t) is the magnetic field at the axis of the coil due to I1(t), then as a function of time (t > 0), the product I2 (t) B(t

(1) Increases with time

(2) Decreases with time

(3) Does not vary with time

(4) Passes through a maximum

Subtopic:  LR circuit |
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

advertisementadvertisement

Two circular coils can be arranged in any of the three situations shown in the figure. Their mutual inductance will be 

(1) Maximum in situation (A)

(2) Maximum in situation (B)

(3) Maximum in situation (C)

(4) The same in all situations

Subtopic:  Mutual Inductance |
 74%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch