A current-carrying wire is placed in a uniform magnetic field in the shape of the curve \(y= \alpha \sin \left({\pi x \over L}\right),~0 \le x \le2L.\)
What will be the force acting on the wire?
1. | \(iBL \over \pi\) | 2. | \(iBL \pi\) |
3. | \(2iBL \) | 4. | zero |
A long straight wire along the z-axis carries a current I in the negative z-direction. The magnetic field vector at a point having coordinates (x, y) in the z = 0 plane is :
1.
2.
3.
4.
A particle of charge \(+q\) and mass \(m\) moving under the influence of a uniform electric field \(E\hat i\) and a uniform magnetic field \(\mathrm B\hat k\) follows a trajectory from \(P\) to \(Q\) as shown in the figure. The velocities at \(P\) and \(Q\) are \(v\hat i\) and \(-2v\hat j\) respectively. Which of the following statement(s) is/are correct?
1. | \(E=\frac{3}{4} \frac{{mv}^2}{{qa}}\). |
2. | Rate of work done by electric field at \(P\) is \(\frac{3}{4} \frac{{mv}^3}{a}\). |
3. | Rate of work done by both fields at \(Q\) is zero. |
4. | All of the above. |
For a positively charged particle moving in a x-y plane initially along the x-axis, there is a sudden change in its path due to the presence of electric and/or magnetic fields beyond P. The curved path is shown in the x-y plane and is found to be non-circular. Which one of the following combinations is possible
1.
2.
3.
4.
A conducting loop carrying a current \(I\) is placed in a uniform magnetic field pointing into the plane of the paper as shown. The loop will tend to
1. | Contract |
2. | Expand |
3. | Move towards \(+ve~ X -axis \) |
4. | Move towards \(-ve~ X -axis \) |
Two long conductors, separated by a distance d carry current and in the same direction. They exert a force F on each other. Now the current in one of them is increased to two times and its direction is reversed. The distance is also increased to . The new value of the force between them is-
1.
2.
3.
4.
Three long, straight parallel wires carrying current, are arranged as shown in figure. The force experienced by a 25 cm length of wire C is
1.
2.
3. Zero
4.
A current-carrying closed loop in the form of a right-angle isosceles triangle ABC is placed in a uniform magnetic field acting along AB. If the magnetic force on the arm BC is F, the force on the arm AC is:
1. 2.
3. 4.
A galvanometer of resistance, G is shunted by a resistance S ohm. To keep the main current in the circuit unchanged, the resistance to be put in series with the galvanometer is
(1)
(2)
(3)
(4)
and ions are projected on the photographic plate with the same velocity in a mass spectrograph. Which one will strike the farthest?
1.
2.
3.
4. H+