1. | \(5\) cm/sec towards the mirror |
2. | \(4\) cm/sec towards the mirror |
3. | \(4\) cm/sec away from the mirror |
4. | \(9\) cm/sec away from the mirror |
A room (cubical) is made of mirrors. An insect is moving along the diagonal on the floor
such that the velocity of image of insect on two adjacent wall mirrors is . The
velocity of image of insect in ceiling mirror is
1. 10
2. 20
3.
4.
Figure shows a cubical room ABCD with the wall CD as a plane mirror. Each side of the
room is 3m. We place a camera at the midpoint of the wall AB. At what distance should
the camera be focussed to photograph an object placed at A
1. 1.5 m
2. 3 m
3. 6 m
4. More than 6 m
If an object moves towards a plane mirror with a speed v at an angle to the perpendicular to the plane of the mirror, find the relative velocity between the object and the image
1. v
2. 2v
3. 2v cos
4. 2v sin
To an astronaut in a spaceship, the sky appears:
(1) Black
(2) White
(3) Green
(4) Blue
A beam of light from a source L is incident normally on a plane mirror fixed at a certain distance x from the source. The beam is reflected back as a spot on a scale placed just above the source L. When the mirror is rotated through a small angle , the spot of light is found to move through a distance y on the scale. The angle is given by
(1)
(2)
(3)
(4)
Two identical glass equi-convex lenses of focal length each are kept in contact. The space between the two lenses is filled with water . The focal length of the combination is
(a) (b)
(c) (d)
An air bubble in a glass slab with refractive index 1.5 (near normal incidence) is 5 cm deep when viewed from one surface and 3 cm deep when viewed from the opposite face. The thickness (in cm) of the slab is
(1) 8
(2) 10
(3) 12
(4) 16
An astronomical telescope has an objective and eyepiece of focal lengths 40 cm and 4 cm respectively. To view an object 200 cm away from the objective, the lenses must be separated by a distance of :
(1) 46.0 cm
(2) 50.0 cm
(3) 54.0 cm
(4) 37.3 cm
Match the corresponding entries of Column 1 with Column 2. [Where m is the magnification produced by the mirror]
Column 1 Column 2
A. m=-2 a. Convex mirror
B. m=-1/2 b. Concave mirror
C. m=+2 c. Real image
D. m=+1/2 d. Virtual Image
(1)A->a and c;B->a and d; C->a and b; D->c and d
(2)A->a and d; B->b and c; C->b and d; D-> b and c
(3)A->c and d; B->b and d;C->b and c;D->a and d
(4)A->b and c; B->b and c; C->b and d; D->a and d