Energy required to move a body of mass m from an orbit of radius 2R to 3R is
1.
2.
3.
4.
If the radius of the earth contracts by 2% and its mass remains the same, then weight of the body at the earth surface :
1. Will decrease
2. Will increase
3. Will remain the same
4. None of these
The kinetic energy needed to project a body of mass m from the earth surface (radius R) to infinity is -
1. mgR/2
2. 2 mgR
3. mgR
4. mgR/4
A satellite is to revolve round the earth in a circle of radius 8000 km. The speed at which this satellite be projected into an orbit, will be
1.
2. 16 km/s
3. 7.15 km/s
4. 8 km/s
If the mass of a body is M on the earth surface, then the mass of the same body on the moon surface is:
1. M/6
2. Zero
3. M
4. None of these
Radius of orbit of satellite of earth is R. Its kinetic energy is proportional to -
1.
2.
3. R
4.
A particle falls towards earth from infinity. It’s velocity on reaching the earth would be -
1. Infinity
2.
3.
4. Zero
Two satellite A and B, ratio of masses 3 : 1 are in circular orbits of radii r and 4r. Then ratio of total mechanical energy of A to B is
1. 1 : 3
2. 3 : 1
3. 3 : 4
4. 12 : 1
The orbital velocity of a planet revolving close to earth's surface is
1.
2.
3.
4.
If the gravitational force between two objects were proportional to \(\frac{1}{R}\) (and not as\(\frac{1}{R^2}\)) where \(R\) is the separation between them, then a particle in circular orbit under such a force would have its orbital speed \(v\) proportional to:
1. \(\frac{1}{R^2}\)
2. \(R^{0}\)
3. \(R^{1}\)
4. \(\frac{1}{R}\)