When a metallic surface is illuminated with radiation of wavelength , the stopping potential is V. If the same surface is illuminated with radiation of wavelength 2, the stopping potential is .The threshold wavelength for metallic surface is:
1. 5
2.
3. 3
4. 4
An electron of mass m and a photon have the same energy E. Find the ratio of de-Broglie wavelength associated with the electron to that associated with the photon. (c is the velocity of light)
A radiation of energy 'E' falls normally on a perfectly reflecting surface. The momentum transferred to the surface is (c=velocity of light)
1. E/c
2. 2E/c
3. 2E/c2
4. E/c2
Which of the following figures represents the variation of the particle momentum and the associated de-Broglie wavelength?
1. | 2. | ||
3. | 4. |
What will be the percentage change in the de-Broglie wavelength of the particle if the kinetic energy of the particle is increased to \(16\) times its previous value?
1. \(25\)
2. \(75\)
3. \(60\)
4. \(50\)
For photoelectric emission from certain metal, the cut-off frequency is . If radiation of frequency 2 impinges on the metal plate, the maximum possible velocity of the emitted electron will be (m is the electron mass)
1.
2.
3.
4. none of these