Two identical charged spheres suspended from a common point by two massless strings of lengths l are initially at a distance d(d < < l) apart because of their mutual repulsion. The charges begin to leak from both the spheres at a constant rate. As a result, the spheres approach each other with a velocity v. Then, v varies as a function of the distance x between the sphere, as:
1. \(v \propto x\)
2. \(v \propto x^{\frac{-1}{2}}\)
3. \(v \propto x^{-1}\)
4. \(v \propto x^{\frac{1}{2}}\)
The electric field in a certain region is acting radially outward and is given by \(E = Ar\). A charge contained in a sphere of radius \(a\) centered at the origin of the field will be given by:
1. \(4\pi \varepsilon_0 Aa^2\)
2. \(\pi \varepsilon_0 Aa^2\)
3. \(4\pi \varepsilon_0 Aa^3\)
4. \(\varepsilon_0 Aa^2\)
Two pith balls carrying equal charges are suspended from a common point by strings of equal length, the equilibrium separation between them is r. Now the strings are rigidly clamped at half the height. The equilibrium separation between the balls now become:
1. (1/√2)2
2.
3. (2r/√3)
4. (2r/3)
An electric dipole of moment p is placed in an electric field of intensity E. The dipole acquires a position such that the axis of the dipole makes an angle with the direction of the field. Assuming that the potential energy of the dipole to be zero when , the torque and the potential energy of the dipole will respectively be
1.
2.
3.
4.
A charge Q is enclosed by a Gaussian spherical surface of radius R. If the radius is doubled, then the outward electric flux will
1. be reduced to half
2. remain the same
3. be doubled
4. increase four times
Two positive ions, each carrying a charge q, are separated by a distance d. If F is the force of repulsion between the ions, the number of electrons missing from each ion will be (e being the charge on an electron)
1. 2.
3. 4.
Two parallel metal plates having charges +Q and -Q faces each other at a certain distance between them. If the plates are now dipped in kerosene oil tank, the electric field between the plates will
1. become zero
2. increase
3. decrease
4. remain same
A thin conducting ring of radius R is given a charge +Q. The electric field at the centre O of the ring due to the charge on the part AKB of the ring is E. The electric field at the centre due to the charge on the part ACDB of the ring is
1. 3E along KO
2. E along OK
3. E along KO
4. 3E along OK
Suppose the charge of a proton and an electron differ slightly. One of them is \(\text- e\) and the other is \((e+\Delta e)\). If the net of electrostatic force and gravitational force between two hydrogen atoms placed at a distance \(d\) (much greater than atomic size) apart is zero, then \(\Delta e\)
1. \(10^{-20}~\text{C}\)
2. \(10^{-23}~\text{C}\)
3. \(10^{-37}~\text{C}\)
4. \(10^{-47}~\text{C}\)
The electric field due to a uniformly charged solid sphere of radius R as a function of the distance from its centre is represented graphically by -
(1) (2)
(3) (4)