A particle of mass m is driven by a machine that delivers a constant power of k watts. If the particle starts from rest the force on the particle at time t is:
1.
2.
3.
4.
Two particles of masses m1,m2 move with initial velocities u1 and u2. On collision, one of the particles get excited to higher level, after absorbing energy . If final velocities of particles be v1 and v2, then we must have
1. m12u1+m22u2-=m12v1+m22v2
2. m1u12+m2u2=m1v12+m2v22-
3. m1u12+m2u22-=m1v12+m2v22
4. m12u12+m22u22+=m12v12+m22v22
A ball is thrown vertically downwards from a height of \(20\) m with an initial velocity \(v_0\). It collides with the ground, loses \(50\%\) of its energy in a collision and rebounds to the same height. The initial velocity \(v_0\) is: (Take \(g = 10~\text{m/s}^2\))
1. \(14~\text{m/s}\)
2. \(20~\text{m/s}\)
3. \(28~\text{m/s}\)
4. \(10~\text{m/s}\)
The potential energy of a system increases if work is done
(1) by the system against a conservative force
(2) by the system against a nonconservative force
(3) upon the system by a conservative force
(4) upon the system by a nonconservative force
A particle of mass M starting from rest undergoes uniform acceleration. If the speed acquired in time T is v, the power delivered to the particle is
1.
2.
3.
4.
The points of maximum and minimum attraction in the curve between potential energy (U) and distance (r) of a diatomic molecules are respectively -
(1) S and R
(2) T and S
(3) R and S
(4) S and T
A body of mass 1 kg begins to move under the action of a time dependent force \(F = 2 t\) \(\hat{i} + 3 t^{2}\ \hat{j}\) N, where \(\hat{i}\) and \(\hat{j}\) are unit vectors along X and Y axis, What power will be developed by the force at the time (t) ?
1. \(\left(2 t^{2} + 4 t^{4}\right) W\)
2. \(\left(2 t^{3} + 3 t^{4}\right) W\)
3. \(\left(2 t^{3} + 3 t^{5}\right) W\)
4. \(\left(2 t + 3 t^{3}\right) W\)
A particle is placed at the origin and a force F = kx is acting on it (where k is positive constant). If U(0) = 0, the graph of U(x) versus x will be (where U is the potential energy function)
1.
2.
3.
4.
The force acting on a body moving along x-axis varies with the position of the particle as shown in the fig.
The body is in stable equilibrium at
1. x = x1
2. x = x2
3. both x1 and x2
4. neither x1 nor x2
A particle which is constrained to move along the x-axis, is subjected to a force in the same direction which varies with the distance x of the particle from the origin as . Here k and a are positive constants. For , the functional form of the potential energy U(x) of the particle is-
(1)
(2)
(3)
(4)