A beam of light of 600 nm from a distant source falls on a single slit 1 mm wide and the resulting diffraction pattern is observed on a screen 2 m away. The distance between first dark fringes on either side of the central bright fringe is
1. 1.2cm
2. 1.2mm
3. 2.4cm
4. 2.4mm
Two coherent monochromatic light beams of intensities I and 4I are superposed. The maximum and minimum possible intensities in the resulting beam are
(1) 5I and I
(2) 5I and 3I
(3) 9I and I
(4) 9I and 3I
If the amplitude ratio of two sources producing interference is 3 : 5, the ratio of intensities at maxima and minima is
(1) 25 : 16
(2) 5 : 3
(3) 16 : 1
(4) 25 : 9
For constructive interference to take place between two monochromatic light waves of wavelength λ, the path difference should be
(1)
(2)
(3)
(d)
Ray diverging from a point source forms a wavefront that is:
1. cylindrical.
2. spherical.
3. plane.
4. cubical.
In Young's double slit experiment, if the slit widths are in the ratio \(1:9,\) then the ratio of the intensity at minima to that at maxima will be:
1. \(1\)
2. \(1/9\)
3. \(1/4\)
4. \(1/3\)
The Young's experiment is performed with the lights of blue (λ = 4360 Å) and green colour (λ = 5460 Å), If the distance of the 4th fringe from the centre is x, then
(1) x (Blue) = x (Green)
(2) x (Blue) > x (Green)
(3) x (Blue) < x (Green)
(4)
In Young's double slit experiment, if L is the distance between the slits and the screen upon which interference pattern is observed, x is the average distance between the adjacent fringes and d being the slit separation. The wavelength of light is given by
(1)
(2)
(3)
(4)
In two separate set-ups of the Young's double slit experiment, fringes of equal width are observed when lights of wavelengths in the ratio \(1:2\) are used. If the ratio of the slit separation in the two cases is \(2:1\), the ratio of the distances between the plane of the slits and the screen in the two set-ups is:
1. \(4:1\)
2. \(1:1\)
3. \(1:4\)
4. \(2:1\)
The slits in Young's double-slit experiment have equal widths and the source is placed symmetrically relative to the slits. The intensity at the central fringe is \(I_0\). If one of the slits is closed, the intensity at this point will be:
1. \(I_0\)
2. \(\frac{I_0}{4}\)
3. \(\frac{I_0}{2}\)
4. \(4I_0\)