For a particle executing simple harmonic motion, the kinetic energy K is given by k=kο cos2 ωt. The maximum value of potential energy is

1. Kο                     

2. Zero

3. Kο2                 

4. Not obtainable

Subtopic:  Energy of SHM |
 66%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

A particle is executing simple harmonic motion with frequency \(f\). The frequency at which its kinetic energy changes into potential energy, will be:
1. \(\frac{f}{2}\)
2. \(f\)
3. \(2f\)
4. \(4f\)
Subtopic:  Energy of SHM |
 64%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

There is a body having mass m and performing S.H.M. with amplitude a. There is a restoring force ,F=-Kx where x is the displacement. The total energy of body depends upon -

1.  K, x         

2.  K, a

3.  K, a, x    

4.  K, a, v

Subtopic:  Energy of SHM |
 72%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A body executes simple harmonic motion. The potential energy (P.E.), the kinetic energy (K.E.) and total energy (T.E.) are measured as a function of displacement x. Which of the following statements is true ?

1. P.E. is maximum when x = 0

2. K.E. is maximum when x = 0

3. T.E. is zero when x = 0

4. K.E. is maximum when x is maximum

Subtopic:  Energy of SHM |
 87%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A simple pendulum is suspended from the roof of a trolley which moves in a horizontal direction with an acceleration a, then the time period is given by T=2πlg',  where g'   is equal to

1. g                                                       

2. g-a

3. g+a

4. g2+a2

Subtopic:  Angular SHM |
 87%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The kinetic energy of a particle executing S.H.M. is 16 J when it is in its mean position. If the amplitude of oscillations is 25 cm and the mass of the particle is 5.12 kg, the time period of its oscillation is -

(1) π5sec       

(2) 2π sec

(3) 20π sec   

(4) 5π sec

Subtopic:  Energy of SHM |
 66%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A simple harmonic wave having an amplitude a and time period T is represented by the equation y=5 sinπt+4m Then the value of amplitude (a) in (m) and time period  (T) in second are       

1.   a=10, T=2   

2. a=5, T=1

3.    a=10, T=1    

4. a=5, T=2

Subtopic:  Simple Harmonic Motion |
 85%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If the displacement equation of a particle be represented by y=AsinPt+ Bcos Pt , the particle executes

1.         A uniform circular motion

2.         A uniform elliptical motion

3.         A S.H.M.

4         A rectilinear motion

Subtopic:  Simple Harmonic Motion |
 82%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

On a smooth inclined plane, a body of mass M is attached between two springs. The other ends of the springs are fixed to firm supports. If each spring has force constant K, the period of oscillation of the body (assuming the springs as massless) is

1. 2πM2K1/2         
2. 2π2MK1/2
3. 2πMg sinθ2K         
4. 2π2MgK1/2

                

Subtopic:  Combination of Springs |
 74%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

advertisementadvertisement

The graph shows the variation of displacement of a particle executing SHM with time. We infer from this graph that:

   
 

1. the force is zero at the time \(T/8\).
2. the velocity is maximum at the time \(T/4\).
3. the acceleration is maximum at the time \(T\).
4. the P.E. is equal to the total energy at the time \(T/4\).

Subtopic:  Energy of SHM |
 65%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch