The angular velocity and the amplitude of a simple pendulum is ω and a respectively. At a displacement X from the mean position if its kinetic energy is T and potential energy is V, then the ratio of T to V is 

(1)     X2ω2a2-X2ω2       

(2)    X2/a2-x2

(3)   a2-X2ω2/X2ω2       

(4)   (a2-x2)/X2

Subtopic:  Energy of SHM |
 78%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A particle is executing simple harmonic motion with frequency \(f\). The frequency at which its kinetic energy changes into potential energy, will be:
1. \(\frac{f}{2}\)
2. \(f\)
3. \(2f\)
4. \(4f\)
Subtopic:  Energy of SHM |
 62%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

There is a body having mass m and performing S.H.M. with amplitude a. There is a restoring force ,F=-Kx where x is the displacement. The total energy of body depends upon -

(1)   K, x         

(2)  K, a

(3)   K, a, x    

(4)  K, a, v

Subtopic:  Energy of SHM |
 72%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The potential energy of a simple harmonic oscillator when the particle is half way to its end point is (where E is the total energy)

(1)    18E       

(2)        14E

(3)    12E       

(4)        23E

Subtopic:  Energy of SHM |
 79%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A body executes simple harmonic motion. The potential energy (P.E.), the kinetic energy (K.E.) and total energy (T.E.) are measured as a function of displacement x. Which of the following statements is true ?

(1)  P.E. is maximum when x = 0

(2)  K.E. is maximum when x = 0

(3)  T.E. is zero when x = 0

(4)  K.E. is maximum when x is maximum

Subtopic:  Energy of SHM |
 87%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

­­A man measures the period of a simple pendulum inside a stationary lift and finds it to be T sec. If the lift accelerates upwards with an acceleration g4 , then the period of the pendulum will be

(1) T

(2) T4

(3) 2T5

(4) 2T5

Subtopic:  Angular SHM |
 83%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The total energy of a particle, executing simple harmonic motion is

(1)     x                 

(2)     x2

(3)   Independent of x 

(4)     x1/2

Subtopic:  Energy of SHM |
 76%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A simple pendulum is suspended from the roof of a trolley which moves in a horizontal direction with an acceleration a, then the time period is given by T=2πlg',  where g'   is equal to

(1) g                                                       

(2) g-a

(3) g+a

(4) g2+a2

Subtopic:  Angular SHM |
 87%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If the length of second's pendulum is decreased by 2%, how many seconds it will lose per day?

1. 3927 sec

2. 3727 sec

3. 3427 sec

4. 864 sec

Subtopic:  Simple Harmonic Motion |
 73%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

advertisementadvertisement

The bob of a pendulum of length l is pulled aside from its equilibrium position through an angle θ and then released. The bob will then pass through its equilibrium position with a speed v, where v equals

(1) 2gl(1-sinθ)

(2) 2gl(1+cosθ)

(3) 2gl(1-cosθ)

(4) 2gl(1+sinθ)

Subtopic:  Angular SHM |
 77%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch