How much force is required to produce an increase of 0.2% in the length of a brass wire of diameter 0.6 mm ?
(Young’s modulus for brass = )
1. Nearly 17 N
2 Nearly 34 N
3. Nearly 51 N
4. Nearly 68 N
The isothermal elasticity of a gas is equal to
1. Density
2. Volume
3. Pressure
4. Specific heat
The adiabatic elasticity of a gas is equal to
1. γ × density
2. γ × volume
3. γ × pressure
4. γ × specific heat
When a pressure of 100 atmosphere is applied on a spherical ball, then its volume reduces by 0.01%. The bulk modulus of the material of the rubber in is:
1.
2.
3.
4.
The Bulk modulus for an incompressible liquid is
1. Zero
2. Unity
3. Infinity
4. Between 0 to 1
The ratio of lengths of two rods \(A\) and \(B\) of the same material is \(1:2\) and the ratio of their radii is \(2:1\). The ratio of modulus of rigidity of \(A\) and \(B\) will be:
1. | \(4:1\) | 2. | \(16:1\) |
3. | \(8:1\) | 4. | \(1:1\) |
When a spiral spring is stretched by suspending a load on it, the strain produced is called:
1. | Shearing |
2. | Longitudinal |
3. | Volume |
4. | shearing and longitudinal |
The Young's modulus of the material of a wire is \(6\times 10^{12}~\text{N/m}^2\) and there is no transverse strain in it, then its modulus of rigidity will be:
1. \(3\times 10^{12}~\text{N/m}^2\)
2. \(2\times 10^{12}~\text{N/m}^2\)
3. \(10^{12}~\text{N/m}^2\)
4. None of the above
A cube of aluminium of sides \(0.1~\text{m}\) is subjected to a shearing force of \(100\) N. The top face of the cube is displaced through \(0.02\) cm with respect to the bottom face. The shearing strain would be:
1. \(0.02\)
2. \(0.1\)
3. \(0.005\)
4. \(0.002\)
Shearing stress causes a change in-
1. Length
2. Breadth
3. Shape
4. Volume