When a pressure of 100 atmosphere is applied on a spherical ball, then its volume reduces by 0.01%. The bulk modulus of the material of the rubber in is:
(1)
(2)
(3)
(4)
A uniform cube is subjected to volume compression. If each side is decreased by 1%, then bulk strain is
(1) 0.01
(2) 0.06
(3) 0.02
(4) 0.03
A ball falling in a lake of depth 200 m shows 0.1% decrease in its volume at the bottom. What is the bulk modulus of the material of the ball
(1)
(2)
(3)
(4)
The Bulk modulus for an incompressible liquid is
(1) Zero
(2) Unity
(3) Infinity
(4) Between 0 to 1
The ratio of lengths of two rods \(A\) and \(B\) of the same material is \(1:2\) and the ratio of their radii is \(2:1\). The ratio of modulus of rigidity of \(A\) and \(B\) will be:
1. | \(4:1\) | 2. | \(16:1\) |
3. | \(8:1\) | 4. | \(1:1\) |
When a spiral spring is stretched by suspending a load on it, the strain produced is called:
1. | Shearing |
2. | Longitudinal |
3. | Volume |
4. | shearing and longitudinal |
The Young's modulus of the material of a wire is \(6\times 10^{12}~\text{N/m}^2\) and there is no transverse strain in it, then its modulus of rigidity will be:
1. \(3\times 10^{12}~\text{N/m}^2\)
2. \(2\times 10^{12}~\text{N/m}^2\)
3. \(10^{12}~\text{N/m}^2\)
4. None of the above
Modulus of rigidity of a liquid:
(1) Non zero constant
(2) Infinite
(3) Zero
(4) Can not be predicted
A cube of aluminium of sides \(0.1~\text{m}\) is subjected to a shearing force of \(100\) N. The top face of the cube is displaced through \(0.02\) cm with respect to the bottom face. The shearing strain would be:
1. \(0.02\)
2. \(0.1\)
3. \(0.005\)
4. \(0.002\)
The upper end of a wire of radius 4 mm and length 100 cm is clamped and its other end is twisted through an angle of 30°. Then angle of shear is
(1)
(2)
(3)
(4)