A siphon in use is demonstrated in the following figure. The density of the liquid flowing in siphon is 1.5 gm/cc. The pressure difference between the point P and S will be
1.
2.
3. Zero
4. Infinity
The height of a mercury barometer is 75 cm at sea level and 50 cm at the top of a hill. Ratio of density of mercury to that of air is . The height of the hill is
1. 250 m
2. 2.5 km
3. 1.25 km
4. 750 m
Equal masses of water and a liquid of relative density are mixed together, then the mixture has a density of:
1.
2.
3.
4.
A body of density is counterpoised by Mg of weights of density in air of density d. Then the true mass of the body is
1. M
2.
3.
4.
The value of g at a place decreases by 2%. The barometric height of mercury
1. Increases by 2%
2. Decreases by 2%
3. Remains unchanged
4. Sometimes increases and sometimes decreases
A barometer kept in a stationary elevator reads . If the elevator starts accelerating up, the reading will be:
1. Zero
2. Equal to
3. More than
4. Less than
A closed rectangular tank is completely filled with water and is accelerated horizontally with an acceleration a towards right. Pressure is (i) maximum at, and (ii) minimum at
1. (i) B (ii) D
2. (i) C (ii) D
3. (i) B (ii) C
4. (i) B (ii) A
A vertical -tube of uniform inner cross-section contains mercury in both its arms. A glycerin (density g/cm3) column of length cm is introduced into one of its arms. Oil of density g/cm3 is poured into the other arm until the upper surfaces of the oil and glycerin are at the same horizontal level. The length of the oil column is:
(density of mercury g/cm3)
1. cm
2. cm
3. cm
4. cm
A triangular lamina of area A and height h is immersed in a liquid of density in a vertical plane with its base on the surface of the liquid. The thrust on the lamina is:
1.
2.
3.
4.
If two liquids of same masses but densities and respectively are mixed, then density of mixture is given by
1.
2.
3.
4.