A parallel beam of monochromatic light of wavelength \(5000~\mathring{A}\) is incident normally on a single narrow slit of width \(0.001\) mm. The light is focused by a convex lens on a screen placed on the focal plane. The first minimum will be formed for the angle of diffraction equal to:
1. \(0^{\circ}\)
2. \(15^{\circ}\)
3. \(30^{\circ}\)
4. \(60^{\circ}\)
In the far field diffraction pattern of a single slit under polychromatic illumination, the first minimum with the wavelength is found to be coincident with the third maximum at . So
(1)
(2)
(3)
(4)
The angle of polarisation for any medium is \(60^\circ,\) what will be the critical angle for this?
1. | \( \sin ^{-1} \sqrt{3} \) | 2. | \( \tan ^{-1} \sqrt{3} \) |
3. | \(\cos ^{-1} \sqrt{3}\) | 4. | \(\sin ^{-1} \frac{1}{\sqrt{3}}\) |
A beam of light AO is incident on a glass slab (μ = 1.54) in a direction as shown in figure. The reflected ray OB is passed through a Nicol prism on viewing through a Nicole prism, we find on rotating the prism that,
1. the intensity is reduced down to zero and remains zero.
2. the intensity reduces down some what and rises again.
3. there is no change in intensity.
4. the intensity gradually reduces to zero and then again increases.
In the propagation of electromagnetic waves, the angle between the direction of propagation and plane of polarisation is:
(1) 0o
(2) 45o
(3) 90o
(4) 180o
An unpolarised light incident on a polariser has amplitude \(A\), and the angle between analyzer and polariser is \(60^{\circ}\). The light transmitted by the analyzer has an amplitude of:
1. \(A\sqrt{2}\)
2. \(\frac{A}{2\sqrt{2}}\)
3. \(\frac{\sqrt{3}A}{2}\)
4. \(\frac{A}{2}\)
Light passes successively through two polarimeters tubes each of length 0.29m. The first tube contains dextro rotatory solution of concentration 60kgm–3 and specific rotation 0.01rad m2kg–1. The second tube contains laevo rotatory solution of concentration 30kg/m3 and specific rotation 0.02 radm2kg–1. The net rotation produced is
(1) 15°
(2) 0°
(3) 20°
(4) 10°
Unpolarized light of intensity 32Wm–2 passes through three polarizers such that transmission axes of the first and second polarizer makes and angle 30° with each other and the transmission axis of the last polarizer is crossed with that of the first. The intensity of final emerging light will be
(1) 32 Wm–2
(2) 3 Wm–2
(3) 8 Wm–2
(4) 4 Wm–2
In the visible region of the spectrum the rotation of the place of polarization is given by . The optical rotation produced by a particular material is found to be 30° per mm at Å and 50° per mm at . The value of constant a will be
(1) per mm
(2) per mm
(3) per mm
(4) per mm
When an unpolarized light of intensity I0 is incident on a polarizing sheet, the intensity of the light which does not get transmitted is:
1. Zero
2. \(I_0\)
3. \(\dfrac{I_0}{2}\)
4. \(\dfrac{I_0}{4}\)