Unpolarized light of intensity 32Wm–2 passes through three polarizers such that transmission axes of the first and second polarizer makes and angle 30° with each other and the transmission axis of the last polarizer is crossed with that of the first. The intensity of final emerging light will be

(1) 32 Wm–2

(2) 3 Wm–2

(3) 8 Wm–2

(4) 4 Wm–2

Subtopic:  Polarization of Light |
 65%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In the visible region of the spectrum the rotation of the place of polarization is given by θ=a+bλ2. The optical rotation produced by a particular material is found to be 30° per mm at λ=5000Å and 50° per mm at λ=4000Å. The value of constant a will be

(1) +50°9per mm

(2) 50°9per mm

(3) +9°50per mm

(4) 9°50per mm

Subtopic:  Polarization of Light |
 63%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

When an unpolarized light of intensity I0 is incident on a polarizing sheet, the intensity of the light which does not get transmitted is:
1. Zero
2. \(I_0\)
3. \(\dfrac{I_0}{2}\)
4. \(\dfrac{I_0}{4}\)

Subtopic:  Polarization of Light |
 74%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Two polaroids are placed in the path of unpolarized beam of intensity I0 such that no light is emitted from the second polaroid. If a third polaroid whose polarization axis makes an angle θ with the polarization axis of first polaroid, is placed between these polaroids then the intensity of light emerging from the last polaroid will be:

(1) I08sin22θ

(2) I04sin22θ

(3) I02cos4θ

(4) I0cos4θ

Subtopic:  Polarization of Light |
 53%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In the adjacent diagram, CP represents a wavefront and AO & BP, the corresponding two rays. What would be the condition on θ for constructive interference at P between the ray BP and reflected ray OP?

(1) cosθ = 3λ/2d

(2) cosθ = λ/4dθ

(3) secθ – cosθ = λ/d

(4) secθ – cosθ = 4λ/d

Subtopic:  Interference vs Diffraction |
 51%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In the Young's double slit experiment, if the phase difference between the two waves interfering at a point is ϕ, the intensity at that point can be expressed by the expression-

(where A and B depend upon the amplitudes of the two waves)

(1) I=A2+B2cos2ϕ

(2) I=ABcosϕ

(3) I=A+Bcosϕ2

(4) I=A+Bcosϕ

 

Subtopic:  Young's Double Slit Experiment |
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

advertisementadvertisement

When one of the slits of Young’s experiment is covered with a transparent sheet of thickness 4.8 mm, the central fringe shifts to a position originally occupied by the 30th bright fringe. What should be the thickness of the sheet if the central fringe has to shift to the position occupied by 20th bright fringe 

(1) 3.8 mm

(2) 1.6 mm

(3) 7.6 mm

(4) 3.2 mm

Subtopic:  Young's Double Slit Experiment |
 71%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

In the ideal double-slit experiment, when a glass-plate (refractive index 1.5) of thickness t is introduced in the path of one of the interfering beams (wavelength λ), the intensity at the position where the central maximum occurred previously remains unchanged. The minimum thickness of the glass-plate is 

(1) 2λ

(2) 2λ3

(3) λ3

(4) λ

Subtopic:  Young's Double Slit Experiment |
 65%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

In the figure is shown Young’s double-slit experiment, \(Q\) is the position of the first bright fringe on the right side of \(O.\) \(P\) is the \(11\)th bright fringe on the other side, as measured from \(Q.\) If the wavelength of the light used is \(6000 \times10^{-10}\) m, then \(S_1B\) will be equal to:

   
1. \(6\times10^{-6}\) m
2. \(6.6\times10^{-6}\) m
3. \(3.1\times10^{-6}\) m
4. \(3.1\times10^{-7}\) m

Subtopic:  Young's Double Slit Experiment |
 50%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

In Young’s double-slit experiment, the two slits act as coherent sources of equal amplitude A and wavelength λ. In another experiment with the same set up, the two slits are of equal amplitude A and wavelength λ but are incoherent. The ratio of the intensity of light at the mid-point of the screen in the first case to that in the second case is:

(1) 1 : 2

(2) 2 : 1

(3) 4 : 1

(4) 1 : 1

Subtopic:  Young's Double Slit Experiment |
 57%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch