A narrow electron beam passes undeviated through an electric field E = and an overlapping magnetic field . If electric field and magnetic field are mutually perpendicular. The speed of the electrons is
1. \(60\) m/s
2.
3.
4.
A beam of electrons is moving with constant velocity in a region having electric and magnetic fields of strength and 0.5 T at right angles to the direction of motion of the electrons. What is the velocity of the electrons
1. 20 2. 40
3. 8 4. 5.5
The ratio of momenta of an electron and an \(\alpha \text-\)particle which are accelerated from rest by a potential difference of \(100~\text{V}\) is:
1. \(1\)
2. \(\sqrt{\frac{2m_e}{m_{\alpha}}}\)
3. \(\sqrt{\frac{m_e}{m_{\alpha}}}\)
4. \(\sqrt{\frac{m_e}{2m_{\alpha}}}\)
The number of photoelectrons emitted for light of a frequency v (higher than the threshold frequency ) is proportional to
1.
2. threshold frequency
3. intensity of light
4. frequency of light (v)
The electron in the hydrogen atom jumps from excited state to its ground state and the photons thus emitted irradiate a photosensitive material. If the work function of the material is the stopping potential is estimated to be (the energy of the electron in the nth state )
1.
2.
3.
4.
1. | \(N\) and \(2T\) | 2. | \(2N\) and \(T\) |
3. | \(2N\) and \(2T\) | 4. | \(N\) and \(T\) |
1. | \(2.4\) V | 2. | \(-1.2\) V |
3. | \(-2.4\) V | 4. | \(1.2\) V |
A source S1 is producing, 1015 photons/s of wavelength 5000 . Another source S2 is producing 1.02 1015 photons per second of wavelength 5100 . Then, (power of S2)/(power of S1) is equal to
1. 1.00 2. 1.02
3. 1.04 4. 0.98
The threshold frequency for a photo-sensitive metal is If the light of frequency is incident on this metal, the cut-off voltage for the photo-electric emission is nearly:
1. 2 V 2. 3 V
3. 5 V 4. 1 V