Waves are associated with matter only:

1. When it is stationary.
2. When it is in motion with the velocity of light only.
3. When it is in motion with any velocity.
4. None of the above.

Subtopic:  De-broglie Wavelength |
 58%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The de-Broglie wavelength associated with the particle of mass m moving with velocity v is

(1) h/mv                 

(2) mv/h 

(3) mh/v                 

(4) m/hv

Subtopic:  De-broglie Wavelength |
 93%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A photon, an electron, and a uranium nucleus all have the same wavelength. The one with the most energy: 

(1) Is the photon

(2) Is the electron

(3) Is the uranium nucleus

(4) Depends upon the wavelength and the properties of the particle

Subtopic:  De-broglie Wavelength |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A particle which has zero rest mass and non-zero energy and momentum must travel with a speed:
1. Equal to \(c\), the speed of light in vacuum.
2. Greater than \(c\).
3. Less than \(c\).
4. Tending to infinity.
Subtopic:  De-broglie Wavelength |
 76%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

When the kinetic energy of an electron is increased, the wavelength of the associated wave will
(1) Increase

(2) Decrease

(3) Wavelength does not depend on the kinetic energy

(4) None of the above

Subtopic:  De-broglie Wavelength |
 85%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If the de-Broglie wavelengths for a proton and an alpha-particle are equal, then the ratio of their velocities will be:
1. \(4:1\)
2. \(2:1\)
3. \(1:2\)
4. \(1:4\)

Subtopic:  De-broglie Wavelength |
 69%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The de-Broglie wavelength λ associated with an electron having kinetic energy E is given by the expression

(1) h2mE                           

(2) 2hmE

(3) 2mhE                               

(4) 22mEh

Subtopic:  De-broglie Wavelength |
 95%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Dual nature of radiation is shown by:

(1) Diffraction and reflection

(2) Refraction and diffraction

(3) Photoelectric effect alone

(4) Photoelectric effect and diffraction

Subtopic:  Photoelectric Effect: Experiment |
 70%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

For the Bohr's first orbit of circumference 2πr, the de-Broglie wavelength of revolving electron will be

(a) 2πr                       (b) πr
(c) 12πr                      (d) 14πr

Subtopic:  Bohr's Model of Atom |
 77%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

An electron of mass m when accelerated through a potential difference V has de-Broglie wavelength λ. The de-Broglie wavelength associated with a proton of mass M accelerated through the same potential difference will be

(1) λmM                           

(2) λmM

(3) λMm                           

(4) λMm

Subtopic:  De-broglie Wavelength |
 75%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints