If the de-Broglie wavelengths for a proton and an alpha-particle are equal, then the ratio of their velocities will be:
1. \(4:1\)
2. \(2:1\)
3. \(1:2\)
4. \(1:4\)

Subtopic:  De-broglie Wavelength |
 69%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The de-Broglie wavelength λ associated with an electron having kinetic energy E is given by the expression

(1) h2mE                           

(2) 2hmE

(3) 2mhE                               

(4) 22mEh

Subtopic:  De-broglie Wavelength |
 95%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Dual nature of radiation is shown by:

(1) Diffraction and reflection

(2) Refraction and diffraction

(3) Photoelectric effect alone

(4) Photoelectric effect and diffraction

Subtopic:  Photoelectric Effect: Experiment |
 70%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

An electron of mass m when accelerated through a potential difference V has de-Broglie wavelength λ. The de-Broglie wavelength associated with a proton of mass M accelerated through the same potential difference will be

(1) λmM                           

(2) λmM

(3) λMm                           

(4) λMm

Subtopic:  De-broglie Wavelength |
 75%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

What is the de-Broglie wavelength of the α-particle accelerated through a potential difference V 
(1) 0.287V Å                 

(2) 12.27V Å

(3) 0.101V Å                 

(4) 0.202V Å

Subtopic:  De-broglie Wavelength |
 58%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

How much energy should be added to an electron to reduce its de-Broglie wavelength from \(10^{-10}\) m to \(0.5\times10^{-10}\) m?
1. Four times the initial energy.
2. Thrice the initial energy.
3. Equal to the initial energy.
4. Twice the initial energy.

Subtopic:  De-broglie Wavelength |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The de-Broglie wavelength of an electron having \(80~\text{eV}\) of energy is nearly:
\((1~\text{eV}= 1.6\times 10^{-19}~\text{J}\), Mass of electron \(= 9\times 10^{-31}~\text{kg}\) Plank’s constant \(= 6.6\times 10^{-34}~\text{J-s})\)
1. \(140~\mathring{A}\)
2. \(0.14~\mathring{A}\)
3. \(14~\mathring{A}\)
4. \(1.4~\mathring{A}\)
Subtopic:  De-broglie Wavelength |
 57%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If the following particles are moving at the same velocity, then which among them will have the maximum de-Broglie wavelength?
1. Neutron               
2. Proton
3. \(β -\)particle             
4. \(α -\)particle

Subtopic:  De-broglie Wavelength |
 59%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If an electron and a photon propagate in the form of waves having the same wavelength, it implies that they have the same 
(1) Energy             

(2) Momentum

(3) Velocity             

(4) Angular momentum

Subtopic:  De-broglie Wavelength |
 71%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The de-Broglie wavelength is proportional to 
(1) λ1v               

(2) λ1m

(3) λ1p               

(4) λp

Subtopic:  De-broglie Wavelength |
 81%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch