If the de-Broglie wavelengths for a proton and an alpha-particle are equal, then the ratio of their velocities will be:
1. \(4:1\)
2. \(2:1\)
3. \(1:2\)
4. \(1:4\)
The de-Broglie wavelength associated with an electron having kinetic energy E is given by the expression
(1)
(2)
(3) 2mhE
(4)
Dual nature of radiation is shown by:
(1) Diffraction and reflection
(2) Refraction and diffraction
(3) Photoelectric effect alone
(4) Photoelectric effect and diffraction
An electron of mass m when accelerated through a potential difference V has de-Broglie wavelength . The de-Broglie wavelength associated with a proton of mass M accelerated through the same potential difference will be
(1)
(2)
(3)
(4)
What is the de-Broglie wavelength of the -particle accelerated through a potential difference V
(1) Å
(2) Å
(3) Å
(4) Å
How much energy should be added to an electron to reduce its de-Broglie wavelength from \(10^{-10}\) m to \(0.5\times10^{-10}\) m?
1. Four times the initial energy.
2. Thrice the initial energy.
3. Equal to the initial energy.
4. Twice the initial energy.
The de-Broglie wavelength of an electron having 80eV of energy is nearly
(1eV = J, Mass of electron = Kg Plank’s constant = J-sec)
(a) 140 Å (b) 0.14 Å
(c) 14 Å (d) 1.4 Å
If the following particles are moving at the same velocity, then which among them will have the maximum de-Broglie wavelength?
1. Neutron
2. Proton
3. \(β
-\)particle
4. \(α
-\)particle
If an electron and a photon propagate in the form of waves having the same wavelength, it implies that they have the same
(1) Energy
(2) Momentum
(3) Velocity
(4) Angular momentum
The de-Broglie wavelength is proportional to
(1)
(2)
(3)
(4)