In a photoemissive cell with executing wavelength λ, the fastest electron has speed v. If the exciting wavelength is changed to 3λ/4, the speed of the fastest emitted electron will be 
(a) v3/41/2                              (b) v4/31/2
(c) Less than v4/31/2               (d) Greater than v4/31/2

Subtopic:  Photoelectric Effect: Experiment |
 54%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Photoelectric emission is observed from a metallic surface for frequencies v1 and v2 of the incident light rays v1>v2. If the maximum values of kinetic energy of the photoelectrons emitted in the two cases are in the ratio of 1:k, then the threshold frequency of the metallic surface is

(1) v1-v2k-1          

(2) kv1-v2k-1

(3) kv2-v1k-1         

(4) v2-v1k

Subtopic:  Electron Emission |
 76%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The ratio of de-Broglie wavelengths of molecules of hydrogen and helium which are at temperature 27 °C and 127 °C respectively is
(1) 12               

(2) 38

(3) 83             

(4) 1

Subtopic:  De-broglie Wavelength |
 75%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A photon of wavelength 6630 Å is incident on a totally reflecting surface. The momentum delivered by the photon is equal to

(1) 6.63×10-27 kg-m/sec                           

(2) 2×10-27 kg-m/sec

(3) 10-27 kg-m/sec                                     

(4) None of these

Subtopic:  De-broglie Wavelength |
 54%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The ratio of de-Broglie wavelength of a α-particle to that of a proton being subjected to the same magnetic field so that the radii of their path are equal to each other assuming the field induction vector B is perpendicular to the velocity vectors of the α-particle and the proton is
1. 1                     

2. 14

3. 12                   

4. 2

Subtopic:  De-broglie Wavelength |
 66%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In a photocell bichromatic light of wavelength 2475 Å and 6000 Å are incident on cathode whose work function is 4.8 eV. If a uniform magnetic field of 3×10-5 Tesla exists parallel to the plate, the radius of the path described by the photoelectron will be (mass of electron = 9×10-31 kg)

(1) 1 cm                     

(2) 5 cm

(3) 10 cm                     

(4) 25 cm

Subtopic:  Einstein's Photoelectric Equation |
 67%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

According to Einstein's photoelectric equation, the graph between the kinetic energy of photoelectrons ejected and the frequency of incident radiation is

Subtopic:  Einstein's Photoelectric Equation |
 76%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

For the photoelectric effect, the maximum kinetic energy E1 of the emitted photoelectrons is plotted against the frequency v of the incident photons as shown in the figure. The slope of the curve gives

(a) Charge of the electron

(b) Work function of the metal

(c) Planck's constant

(d) Ratio of the Planck’s constant to electronic charge

Subtopic:  Einstein's Photoelectric Equation |
 63%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The stopping potential \(V\) for photoelectric emission from a metal surface is plotted along the \(Y\text-\)axis and the frequency \(\nu\) of incident light along the \(X\text-\)axis. A straight line is obtained as shown in the figure. Planck's constant is given by:
             

1. the slope of the line.
2. the product of slope on the line and charge on the electron.
3. the product of intercept along the \(Y\text-\)axis and mass of the electron.
4. the product of the slope and mass of the electron.
Subtopic:  Einstein's Photoelectric Equation |
 67%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

In an experiment on the photoelectric effect, the frequency \(f\) of the incident light is plotted against the stopping potential \(V_0.\) The work function of the photoelectric surface is given by:
(\(e\) is an electronic charge) 

            

1. \(OB\times e\) in eV
2. \(OB\) in volt
3. \(OA\) in eV
4. The slope of the line \(AB\)
Subtopic:  Einstein's Photoelectric Equation |
 67%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch