Energy is being emitted from the surface of a black body at 127 temperature at the rate of . Temperature of the black body at which the rate of energy emission is will be -
(a) 254 (b) 508
(c) 527 (d) 727
If temperature of a black body increases from to , then the rate of energy radiation increases by
(a) (b) 16
(c) 4 (d) 2
The area of a hole of heat furnace is . It radiates calories of heat per hour. If the emissivity of the furnace is 0.80, then its temperature is
(1) 1500 K
(2) 2000 K
(3) 2500 K
(4) 3000 K
Two spheres P and Q, of same colour having radii 8 cm and 2 cm are maintained at temperatures 127and 527 respectively. The ratio of energy radiated by P and Q is
(a) 0.054 (b) 0.0034
(c) 1 (d) 2
A body radiates energy 5W at a temperature of 127. If the temperature is increased to 927, then it radiates energy at the rate of
(a) 410 W (b) 81 W
(c) 405 W (d) 200 W
The temperatures of two bodies A and B are respectively 727 and 327. The ratio of the rates of heat radiated by them is
(1)727:327
(2) 5 : 3
(3) 25 : 9
(4) 625 : 81
The radiant energy from the sun incident normally at the surface of earth is . What would have been the radiant energy incident normally on the earth, if the sun had a temperature twice of the present one ?
(a) (b)
(c) (d)
A spherical black body with a radius of 12 cm radiates 440 W power at 500 K. If the radius were halved and the temperature doubled, the power radiated in watt would be
(1) 225
(2) 450
(3) 900
(4) 1800
If the temperature of the sun (black body) is doubled, the rate of energy received on earth will be increased by a factor of
(1) 2
(2) 4
(3) 8
(4) 16
The ratio of energy of emitted radiation of a black body at 27 and 927 is
(a) 1 : 4 (b) 1 : 16
(c) 1 : 64 (d) 1 : 256