Which one of the series of hydrogen spectrum is in the visible region 

1. Lyman series             

2. Balmer series

3. Paschen series           

4. Bracket series

Subtopic:  Spectral Series |
 90%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The Rutherford α-particle experiment shows that most of the α-particles pass through almost unscattered while some are scattered through large angles. What information does it give about the structure of the atom 

(1) Atom is hollow

(2) The whole mass of the atom is concentrated in a small centre called nucleus

(3) Nucleus is positively charged

(4) All the above

Subtopic:  Various Atomic Models |
 84%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Which of the following is true 

(1) Lyman series is a continuous spectrum

(2) Paschen series is a line spectrum in the infrared

(3) Balmer series is a line spectrum in the ultraviolet

(4) The spectral series formula can be derived from the Rutherford model of the hydrogen atom

Subtopic:  Spectral Series |
 77%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The energy required to knock out the electron in the third orbit of a hydrogen atom is equal to
(1) 13.6 eV           

(2) +13.69eV

(3) -13.63eV      

(4) -313.6eV

Subtopic:  Bohr's Model of Atom |
 86%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

An electron has a mass of 9.1×10-31 kg. It revolves round the nucleus in a circular orbit of radius 0.529×10-10 metre at a speed of 2.2×106 m/s. The magnitude of its linear momentum in this motion is

(a) 1.1×10-34 kg-m/s             (b) 2.0×10-24 kg-m/s 
(c) 4.0×10-24 kg-m/s           (d) 4.0×10-31 kg-m/s

Subtopic:  Various Atomic Models |
 68%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The ionization potential for second He electron is
(1) 13.6 eV                 

(2) 27.2 eV

(3) 54.4 eV                 

(4) 100 eV

Subtopic:  Bohr's Model of Atom |
 57%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The energy required to remove an electron in a hydrogen atom from n = 10 state is 
(1) 13.6 eV                   

(2) 1.36 eV

(3) 0.136 eV                 

(4) 0.0136 eV

Subtopic:  Bohr's Model of Atom |
 77%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

Every series of hydrogen spectrum has an upper and lower limit in wavelength. The spectral series which has an upper limit of wavelength equal to 18752 Å is 
1. Balmer series               

2. Lyman series

3. Paschen series               

4. Pfund series

(Rydberg constant R = 1.097×107 per metre)

Subtopic:  Spectral Series |
 58%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

An electron jumps from the 4th orbit to the 2nd orbit of hydrogen atom. Given the Rydberg's constant R = 105 cm-1. The frequency in Hz of the emitted radiation will be 
(a) 316×105           (b) 316×1015
(c) 916×1015          (d) 34×1015

Subtopic:  Bohr's Model of Atom |
 67%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The ionisation potential of hydrogen atom is 13.6 volt. The energy required to remove an electron in the n = 2 state of the hydrogen atom is 

1. 27.2 eV 2. 13.6 eV
3. 6.8 eV 4. 3.4 eV
Subtopic:  Bohr's Model of Atom |
 86%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints