The rate of a reaction increases 4-fold when concentration of reactant is increased 16 times.
If the rate of reaction is 4 × 10-6 mol L-1s-1 when concentration of the reactant is 4 × 10-4 mol L-1, the rate constant of the reaction will be :
1. 2 × 10-4 m1/2 L-1/2 s-1
2. 1 × 10-2 s-1
3. 4 × 10-4 mol-1/2 L-1/2 s-1
4. 25 mol-1L min-1
If ‘a’ is the initial concentration of a substance which reacts according to zero-order kinetics and k is the rate constant, the time for the reaction to go to completion will be:
1. | a/k | 2. | 2/ka |
3. | k/a | 4. | Infinite |
The decomposition of a gaseous compound yields the following information:
Initial pressure, atm | 1.6 | 0.8 | 0.4 |
Time for 50 % reaction, min | 80 | 113 | 160 |
1. | 1.0 | 2. | 1.5 |
3. | 2.0 | 4. | 0.5 |
For a given reaction the concentration of the reactant plotted against time gave a straight line with negative slope.
The order of the reaction will be:
1. 3
2. 2
3. 1
4. 0
The rate constant of a first-order reaction is typically determined from a plot of:
1. Concentration of reactant vs time t
2. Log (concentration of reactant) vs time t
3. \(\frac{1}{\text { concentration of reactant }} \text { vs time } t\)
4. Concentration of reactant vs log time t
The relationship between temperature and the variance in reaction rate is:
1. | 2. | ||
3. | 4. |
The plot of log k versus is linear with a slope of
(1)
(2)
(3)
(4)
If a reaction A + B C is exothermic to the extent of 30 kJ/mol and the forward reaction has an activation energy of 70 kJ/mol, the activation energy for the reverse reaction will be:
1. 30 kJ/mol
2. 40kJ/mol
3. 70 kJ/mol
4. 100 kJ/mol
A first-order reaction takes 40 min for 30 % decomposition. The t1/2 for this reaction will be:
1. | 77.7 min | 2. | 27.2 min |
3. | 55.3 min | 4. | 67.3 min |
For a certain reaction involving a single reactant, it is found that is constant where is the initial concentration of the reactant and T is the half-life. What is the order of the reaction ?
(1) 1
(2) Zero
(3) 2
(4) 3