An electron jumps from 5th orbit to 4th orbit of hydrogen atom. Taking the Rydberg constant as  107 per metre. What will be the frequency of radiation emitted

(1) 6.75×1012 Hz             

(2) 6.75×1014 Hz

(3) 6.75×1013 Hz             

(4) None of these

Subtopic:  Bohr's Model of Atom |
 70%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Four lowest energy levels of H-atom are shown in the figure. The number of possible emission lines would be

(1) 3             

(2) 4

(3) 5             

(4) 6

Subtopic:  Spectral Series |
 80%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The wavelength of light emitted when an electron jumps from second orbit to first orbits in a hydrogen atom is 
(a) 1.215×10-7 m         (b) 1.215×10-5 m
(c) 1.215×10-4 m          (d) 1.215×10-3 m

Subtopic:  Bohr's Model of Atom |
 78%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The de-Broglie wavelength of an electron in the first Bohr orbit is 

(1) Equal to one fourth the circumference of the first orbit

(2) Equal to half the circumference of the first orbit

(3) Equal to twice the circumference of the first orbit

(4) Equal to the circumference of the first orbit

Subtopic:  Bohr's Model of Atom |
 74%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The frequency of 1st line of Balmer series in H2 atom is v0. The frequency of line emitted by singly ionised He atom is

(1) 2v0          

(2) 4v0

(3) v0/2         

(4) v0/4

Subtopic:  Spectral Series |
 77%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

When the electron in the hydrogen atom jumps from 2nd orbit to 1st orbit, the wavelength of radiation emitted is λ. When the electrons jump from 3rd orbit to 1st orbit, the wavelength of emitted radiation would be

 
(1) 2732λ             

(2) 3227λ

(3) 23λ               

(4) 32λ

Subtopic:  Spectral Series |
 74%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Which of the following transition will have shortest emission wavelength ?

(1) n = 2 to n =1           

(2) n = 1 to n = 2 

(3) n = 2 to n = 5         

(4) n = 5 to n = 2 

Subtopic:  Spectral Series |
 65%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If the binding energy of the electron in a hydrogen atom is 13.6 eV, the energy required to remove the electron from the first excited state of Li++ is 

(1) 122.4 eV       

(2) 30.6 eV

(3) 13.6 eV         

(4) 3.4 eV

Subtopic:  Bohr's Model of Atom |
 64%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

Which state of triply ionised Beryllium Be+++ has the same orbital radius as that of the ground state of hydrogen

(1) n = 4                 

(2) n = 3

(3) n = 2                 

(4) n = 1

Subtopic:  Bohr's Model of Atom |
 66%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The ratio of areas within the electron orbits for the first excited state to the ground state for hydrogen atom is

1. 16 : 1             

2. 18 : 1

3. 4 : 1               

4. 2 : 1

Subtopic:  Bohr's Model of Atom |
 65%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch