If half life of radium is 77 days. Its decay constant in day will be
(1) 3×10-13/day           

(2) 9×10-3/day

(3) 1×10-3/day             

(4) 6×10-3/day

Subtopic:  Radioactivity (OLD NCERT) |
 82%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Consider two nuclei of the same radioactive nuclide. One of the nuclei was created in a supernova explosion 5 billion years ago. The other was created in a nuclear reactor 5 minutes ago. The probability of decay during the next time is 
(1) Different for each nuclei

(2) Nuclei created in explosion decays first

(3) Nuclei created in the reactor decays first

(4) Independent of the time of creation

Subtopic:  Radioactivity (OLD NCERT) |
 62%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

An α-particle of 5 MeV energy strikes with a nucleus of uranium at stationary at a scattering angle of 180o. The nearest distance up to which α-particle reaches the nucleus will be of the order of:
(1) 1 Å               

(2) 10-10 cm 

(3) 10-12 cm      

(4) 10-15 cm

Subtopic:  Types of Decay |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A neutron with velocity V strikes a stationary deuterium atom. Its kinetic energy changes by a factor of 
(1) 1516             

(2) 12

(3) 21               

(4) None of these

Subtopic:  Mass-Energy Equivalent |
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

The sun radiates energy in all directions. The average radiations received on the earth surface from the sun is 1.4 kilowatt/m2.The average earth- sun distance is 1.5×1011 metres. The mass lost by the sun per day is
(1 day = 86400 seconds) 
(a) 4.4×109 kg          (b) 7.6×1014 kg
(c) 3.8×1012 kg         (d) 3.8×1014 kg

Subtopic:  Mass-Energy Equivalent |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The binding energy per nucleon of O16 is 7.97 MeV and that of O17 is 7.75 MeV. The energy (in MeV) required to remove a neutron from O17 is 
(a) 3.52                 (b) 3.64
(c) 4.23                 (d) 7.86

Subtopic:  Nuclear Binding Energy |
 68%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The rest energy of an electron is 0.511 MeV. The electron is accelerated from rest to a velocity 0.5 c. The change in its energy will be
(1) 0.026 MeV           

(2) 0.051 MeV

(3) 0.079 MeV           

(4) 0.105 MeV

Subtopic:  Mass-Energy Equivalent |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

For uranium nucleus how does its mass vary with volume

(1) mV          

(2) m1/V

(3)  mV       

(4) mV2

Subtopic:  Types of Decay |
 72%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In the nuclear fusion reaction H12+H13He24+n given that the repulsive potential energy between the two nuclei is -7.7×10-14 J, the temperature at which the gases must be heated to initiate the reaction is nearly
[Boltzmann’s constant k=1.38×10-23 J/K)
(a)109 K            (b) 107 K
(c) 105 K           (d)  103 K

Subtopic:  Mass-Energy Equivalent |
 62%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A nucleus with mass number 220 initially at rest emits an α-particle. If the Q value of the reaction is 5.5 MeV, calculate the kinetic energy of the α-particle

(1) 4.4 MeV             

(2) 5.4 MeV

(3) 5.6 MeV             

(4) 6.5 MeV

Subtopic:  Types of Decay |
 70%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints