A long solenoid of diameter \(0.1\) m has \(2 \times 10^4\) turns per meter. At the center of the solenoid, a coil of \(100\) turns and radius \(0.01\) m is placed with its axis coinciding with the solenoid axis. The current in the solenoid reduces at a constant rate to \(0\) A from \(4\) A in \(0.05\) s. If the resistance of the coil is \(10\pi^2~\Omega\), then the total charge flowing through the coil during this time is:
1. \(16~\mu \text{C}\)
2. \(32~\mu \text{C}\)
3. \(16\pi~\mu \text{C}\)
4. \(32\pi~\mu \text{C}\)

Subtopic:  Faraday's Law & Lenz Law | Mutual Inductance |
 58%
From NCERT
NEET - 2017
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A long solenoid has \(1000\) turns. When a current of \(4~\text{A}\) flows through it, the magnetic flux linked with each turn of the solenoid is \(4\times 10^{-3}~\text{Wb}\). The self-inductance of the solenoid is:
1. \(3~\text{H}\)
2. \(2~\text{H}\)
3. \(1~\text{H}\)
4. \(4~\text{H}\)
Subtopic:  Self - Inductance |
 88%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

An electron moves on a straight-line path \(XY\) as shown. The \({abcd}\) is a coil adjacent to the path of electrons. What will be the direction of current if any, induced in the coil? 
                       

1. \({abcd}\)
2. \({adcb}\)
3. The current will reverse its direction as the electron goes past the coil
4. No current included 

Subtopic:  Faraday's Law & Lenz Law |
 75%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A conducting square frame of side \(a\) and a long straight wire carrying current \(I\) are located in the same plane as shown in the figure. The frame moves to the right with a constant velocity \(v.\) The emf induced in the frame will be proportional to:
     
1. \( \dfrac{1}{x^2} \)
2. \( \dfrac{1}{(2 x-a)^2} \)
3. \( \dfrac{1}{(2 x+a)^2} \)
4. \(\dfrac{1}{(2 x-a)(2 x+a)}\)

Subtopic:  Motional emf |
 73%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A thin semicircular conducting the ring \((PQR)\) of radius \(r\) is falling with its plane vertical in a horizontal magnetic field \(B,\) as shown in the figure. The potential difference developed across the ring when it moves with speed \(v\) is: 

      

1. zero
2. \(Bv\pi r^{2}/2\) and \(P\) is at a higher potential
3. \(\pi rvB\) and \(R\) is at a higher potential
4. \(2BvR\) and \(R\) is at a higher potential
Subtopic:  Motional emf |
 75%
From NCERT
AIPMT - 2014
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A coil of self-inductance \(L\) is connected in series with a bulb \(B\) and an AC source. The brightness of the bulb decreases when:
1. number of turns in the coil is reduced.
2. a capacitance of reactance \(X_C = X_L\) is included in the same circuit.
3. an iron rod is inserted in the coil.
4. frequency of the AC source is decreased.
Subtopic:  Self - Inductance |
 67%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A wire loop is rotated in a magnetic field. The frequency of change of direction of the induced emf is:
1. twice per revolution.
2. four times per revolution.
3. six times per revolution.
4. once per revolution.
 
Subtopic:  Faraday's Law & Lenz Law |
 74%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A coil of resistance \(400~\Omega\) is placed in a magnetic field. The magnetic flux \(\phi~\text{(Wb)}\) linked with the coil varies with time \(t~\text{(s)}\) as \(\phi=50t^{2}+4.\) The current in the coil at \(t=2~\text{s}\) is:
1. \(0.5~\text{A}\)
2. \(0.1~\text{A}\)
3. \(2~\text{A}\)
4. \(1~\text{A}\)

Subtopic:  Faraday's Law & Lenz Law |
 89%
From NCERT
AIPMT - 2012
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The current (\(I\)) in the inductance is varying with time (\(t\)) according to the plot shown in the figure. 

          
Which one of the following is the correct variation of voltage with time in the coil?
1.   2.
3. 4.
Subtopic:  Self - Inductance |
 73%
From NCERT
AIPMT - 2012
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The current \(i\) in a coil varies with time as shown in the figure. The variation of induced emf with time would be:
     

1.   2.
3. 4.
Subtopic:  Faraday's Law & Lenz Law |
 69%
From NCERT
AIPMT - 2011
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch