A set of vectors taken in a given order gives a closed polygon. Then the resultant of these vectors is a
(1) scalar quantity
(2) pseudovector
(3) unit vector
(4) null vector
The vector sum of two vectors P and Q is minimum when the angle between their positive directions, is
(A)
(B)
(C)
(D)
If the vector sum of two vectors and is maximum, then the angle between two vectors will be:
1.
2.
3.
4.
If \(\overrightarrow P +\overrightarrow Q\)
1. \(\theta = 0^{\circ}\)
2. \(\theta = 90^{\circ}\)
3. \(P=0\)
4. \(Q=0\)
What is the torque of a force newton acting at a point metre about the origin? (Given: )
1.
2.
3.
4.
Three non zero vectors satisfy the relation . Then can be parallel to:
(1)
(2)
(3)
(4)
The scalar product of two vectors is 8 and the magnitude of vector product is . The angle between them is:
(1)
(2)
(3)
(4)
Given: . Out of the three vectors and two are equal in magnitude. The magnitude of the third vector is times that of either of the two having equal magnitude. The angles between the vectors are:
(A) 90, 135, 135
(B) 30, 60, 90
(C) 45, 45, 90
(D) 45, 60, 90
Vector is of length 2 cm and is 60 above the x-axis in the first quadrant. Vector is of length 2 cm and 60 below the x-axis in the fourth quadrant. The sum + is a vector of magnitude -
(A) 2 along + y-axis
(B) 2 along + x-axis
(C) 1 along - x-axis
(D) 2 along - x-axis
Six forces, 9.81 N each, acting at a point are coplanar. If the angle between neighboring forces are equal, then the resultant is
(1) 0 N
(2) 9.81 N
(3) 29.81 N
(4) 39.81 N