When an \(\alpha\text-\)particle of mass \(m\) moving with velocity \(v\) bombards on a heavy nucleus of charge \(Ze\), its distance of closest approach from the nucleus depends on \(m\) as:
1. \(\frac{1}{\sqrt{m}}\)
2. \(\frac{1}{m^{2}}\)
3. \(m\)
4. \( \frac{1}{m}\)

Subtopic:  Various Atomic Models |
 75%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In the spectrum of hydrogen, the ratio of the longest wavelength in the Lyman series to the longest wavelength in the Balmer series is:

1. \(\frac{4}{9}\) 2. \(\frac{9}{4}\)
3. \(\frac{27}{5}\) 4. \(\frac{5}{27}\)
Subtopic:  Spectral Series |
 70%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Consider \(3^{\text{rd}}\) orbit of \(He^{+}\) (Helium). Using a non-relativistic approach, the speed of the electron in this orbit will be: (given \(Z=2\) and \(h\) (Planck's constant)\(= 6.6\times10^{-34}~\text{J-s}\))
1. \(2.92\times 10^{6}~\text{m/s}\)
2. \(1.46\times 10^{6}~\text{m/s}\)
3. \(0.73\times 10^{6}~\text{m/s}\)
4. \(3.0\times 10^{8}~\text{m/s}\)

Subtopic:  Bohr's Model of Atom |
 74%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The hydrogen gas with its atoms in the ground state is excited by monochromatic radiation of \(\lambda = 975~\mathring{{A}}.\) The number of spectral lines in the resulting spectrum emitted will be:
1. \(3\)
2. \(2\)
3. \(6\)
4. \(10\)

Subtopic:  Spectral Series |
 56%
From NCERT
AIPMT - 2014
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The ratio of the longest wavelengths corresponding to the Lyman and Balmer series in the hydrogen spectrum is:
1. \(\dfrac{3}{23}\) 2. \(\dfrac{7}{29}\)
3. \(\dfrac{9}{31}\) 4. \(\dfrac{5}{27}\)
Subtopic:  Spectral Series |
 88%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Electron in hydrogen atom first jumps from the third excited state to the second excited state and then from the second excited to the first excited state. The ratio of the wavelengths \(\lambda_1:\lambda_2\) emitted in the two cases is:
1. \(\frac{7}{5}\)
2. \(\frac{20}{7}\)
3. \(\frac{27}{5}\)
4. \(\frac{27}{20}\)

Subtopic:  Spectral Series |
 67%
From NCERT
AIPMT - 2012
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

An electron of a stationary hydrogen atom passes from the fifth energy level to the ground level. The velocity that the atom acquired as a result of photon emission will be:
(\(m\) is the mass of hydrogen atom, \(R\) is Rydberg constant and \(h\) is Plank’s constant)
1. \(\frac{24m}{25hR}\)
2. \(\frac{25hR}{24m}\)
3. \(\frac{25m}{24hR}\)
4. \(\frac{24hR}{25m}\)

Subtopic:  Bohr's Model of Atom |
 61%
From NCERT
AIPMT - 2012
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The wavelength of the first line of Lyman series for the hydrogen atom is equal to that of the second line of Balmer series for a hydrogen-like ion. The atomic number \(Z\) of hydrogen-like ion is:
1. \(4\)
2. \(1\)
3. \(2\)
4. \(3\)
Subtopic:  Spectral Series |
 67%
From NCERT
AIPMT - 2011
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The energy of a hydrogen atom in the ground state is \(-13.6\) eV. The energy of a \(\mathrm{He}^{+}\) ion in the first excited state will be:
1. \(-13.6\) eV
2. \(-27.2\) eV
3. \(-54.4\) eV
4. \(-6.8\) eV

Subtopic:  Bohr's Model of Atom |
 74%
From NCERT
AIPMT - 2010
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

If an alpha nucleus of energy \(\frac{1}{2}mv^2\) bombards a heavy nuclear target of charge \(Ze\) then the distance of the closest approach for the alpha nucleus will be proportional to:
1. \(\frac{1}{Ze} \) 2. \(v^2 \)
3. \(\frac{1}{m} \) 4. \(\frac{1}{v^4}\)
Subtopic:  Various Atomic Models |
 83%
From NCERT
AIPMT - 2010
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch