\(4.0~\text{gm}\) of gas occupies \(22.4~\text{litres}\) at NTP. The specific heat capacity of the gas at a constant volume is \(5.0~\text{JK}^{-1}\text{mol}^{-1}.\) If the speed of sound in the gas at NTP is \(952~\text{ms}^{-1},\) then the molar heat capacity at constant pressure will be:
(\(R=8.31~\text{JK}^{-1}\text{mol}^{-1}\))
1. | \(8.0~\text{JK}^{-1}\text{mol}^{-1}\) | 2. | \(7.5~\text{JK}^{-1}\text{mol}^{-1}\) |
3. | \(7.0~\text{JK}^{-1}\text{mol}^{-1}\) | 4. | \(8.5~\text{JK}^{-1}\text{mol}^{-1}\) |
The fundamental frequency of a closed organ pipe of a length \(20\) cm is equal to the second overtone of an organ pipe open at both ends. The length of the organ pipe open at both ends will be:
1. | \(80\) cm | 2. | \(100\) cm |
3. | \(120\) cm | 4. | \(140\) cm |
1. | Odd harmonics of the fundamental frequency will be generated. |
2. | All harmonics of the fundamental frequency will be generated. |
3. | Pressure change will be maximum at both ends. |
4. | The open end will be an antinode. |
A wave traveling in the +ve \(x\text-\)direction having maximum displacement along \(y\text-\)direction as \(1~\text{m}\), wavelength \(2\pi~\text{m}\) and frequency of \(\frac{1}{\pi}~\text{Hz}\), is represented by:
1. \(y=\sin (2 \pi x-2 \pi t)\)
2. \(y=\sin (10 \pi x-20 \pi t)\)
3. \(y=\sin (2 \pi x+2 \pi t)\)
4. \( y=\sin (x-2 t)\)
1. | increase by a factor of \(20\). |
2. | increase by a factor of \(10\). |
3. | decrease by a factor of \(20\). |
4. | decrease by a factor of \(10\). |
The driver of a car travelling at a speed of 30 m/s towards a hill sounds a horn of frequency 600 Hz. If the velocity of sound in air is 330 m/s, the frequency of reflected sound as heard by the driver is:
1. 550 Hz
2. 555.5 Hz
3. 720 Hz
4. 500 Hz
1. | \(5\) | 2. | \(7\) |
3. | \(8\) | 4. | \(3\) |
Two sound waves with wavelengths \(5.0~\text{m}\) and \(5.5~\text{m}\), respectively, propagate in gas with a velocity of \(330~\text{m/s}\). How many beats per second can we expect?
1. \(12\)
2. \(0\)
3. \(1\)
4. \(6\)
A transverse wave propagating along the \(x\text-\)axis is represented by:
\(y(x,t)=8.0\sin\left(0.5\pi x-4\pi t-\frac{\pi}{4}\right)\), where \(x\) is in meters and \(t\) in seconds. The speed of the wave is:
1. \(4\pi\) m/s
2. \(0.5\) m/s
3. \(\frac{\pi}{4}\) m/s
4. \(8\) m/s