1. | \( \sqrt{\frac{m k}{2}} t^{-1 / 2} \) | 2. | \( \sqrt{m k} t^{-1 / 2} \) |
3. | \( \sqrt{2 m k} t^{-1 / 2} \) | 4. | \( \frac{1}{2} \sqrt{m k} t^{-1 / 2}\) |
Two particles of masses \(m_1\) and \(m_2\) move with initial velocities \(u_1\) and \(u_2\) respectively. On collision, one of the particles gets excited to a higher level, after absorbing energy \(E\). If the final velocities of particles are \(v_1\) and \(v_2\), then we must have:
1. | \(m_1^2u_1+m_2^2u_2-E = m_1^2v_1+m_2^2v_2\) |
2. | \(\frac{1}{2}m_1u_1^2+\frac{1}{2}m_2u_2^2= \frac{1}{2}m_1v_1^2+\frac{1}{2}m_2v_2^2\) |
3. | \(\frac{1}{2}m_1u_1^2+\frac{1}{2}m_2u_2^2-E= \frac{1}{2}m_1v_1^2+\frac{1}{2}m_2v_2^2\) |
4. | \(\frac{1}{2}m_1^2u_1^2+\frac{1}{2}m_2^2u_2^2+E = \frac{1}{2}m_1^2v_1^2+\frac{1}{2}m_2^2v_2^2\) |
A uniform force of \((3 \hat{i} + \hat{j})\) newton acts on a particle of mass \(2~\text{kg}.\) Hence the particle is displaced from the position \((2 \hat{i} + \hat{k})\) metre to the position \((4 \hat{i} + 3 \hat{j} - \hat{k})\) metre. The work done by the force on the particle is:
1. \(6~\text{J}\)
2. \(13~\text{J}\)
3. \(15~\text{J}\)
4. \(9~\text{J}\)
1. | \(\dfrac{B}{A}\) | 2. | \(\dfrac{B}{2A}\) |
3. | \(\dfrac{2A}{B}\) | 4. | \(\dfrac{A}{B}\) |
1. | \(B.\) | same as that of
2. | \(B.\) | opposite to that of
3. | \(\theta = \text{tan}^{-1}\left(\frac{1}{2} \right)\) to the positive \(x\)-axis. |
4. | \(\theta = \text{tan}^{-1}\left(\frac{-1}{2} \right )\) to the positive \(x\)-axis. |
The potential energy of a system increases if work is done:
1. | by the system against a conservative force |
2. | by the system against a non-conservative force |
3. | upon the system by a conservative force |
4. | upon the system by a non-conservative force |
Force \(F\) on a particle moving in a straight line varies with distance \(d\) as shown in the figure. The work done on the particle during its displacement of \(12\) m is:
1. \(21\) J
2. \(26\) J
3. \(13\) J
4. \(18\) J
A ball moving with velocity 2 ms-1 collides head-on with another stationary ball of double the mass. If the coefficient of restitution is 0.5, then their velocities (in ms-1) after the collision will be:
1. 0, 1
2. 1, 1
3. 1, 0.5
4. 0, 2
An engine pumps water through a hose pipe. Water passes through the pipe and leaves it with a velocity of 2 ms-1. The mass per unit length of water in the pipe is What is the power of the engine?
1. 400 W
2. 200 W
3. 100 W
4. 800 W