The values of ΔH and ΔS for the given reaction are 170 kJ and 170 JK-1, respectively.
C(graphite) + CO2(g)→2CO(g)
This reaction will be spontaneous at:
1. 710 K
2. 910 K
3. 1110 K
4. 510 K
1. ΔH = 0 and ΔS < 0
2. ΔH > 0 and ΔS > 0
3. ΔH < 0 and ΔS < 0
4. ΔH > 0 and ΔS < 0
1. 93 kJ mol-1
2. - 245 kJ mol-1
3. -93 kJ mol-1
4. 245 kJ mol-1
Consider the following reactions:
(i) | H+(aq) + OH-(aq) → H2O(l) ΔH = -x1 kJmol-1 |
(ii) | H2(g) + 1/2O2(g) → H2O(l) ΔH = -x2 kJmol-1 |
(iii) | CO2(g) + H2(g) → CO (g) + H2O(l) ΔH = -x3 kJmol-1 |
(iv) | C2H2(g) + 5/2O2(g) → 2CO2 + H2O(l) ΔH = -x4 kJmol-1 |
Enthalpy of formation of H2O(l) is :
1.
2.
3.
4.
The bond energy of H—H and Cl-Cl is 430 kJ
mol-1 and 240 kJ mol-1 respectively and ΔHf for HCl is -90 kJ mol-1. The bond enthalpy of HCl is:
1. 290
2. 380
3. 425
4. 245
The enthalpy and entropy change for the reaction: Br2 (l) + Cl2 (g) →2BrCl(g), are 30kJ mol-1 and 105 JK-1 mol-1 respectively. The temperature at which the reaction will be in equilibrium is:
1. 285.7 K
2. 273 K
3. 450 K
4. 300 K
The enthalpy of combustion of H2, cyclohexene (C6H10) and cyclohexane (C6H12) are -241, -3800 and -3920 kJ per mol respectively. Heat of hydrogenation of cyclohexene is:
1. -121 kJ per mol
2. +121 kJ per mol
3. +242 kJ per mol
4. -242 kJ per mol
Under the isothermal condition, a gas at \(300 \mathrm{~K}\) expands from \(0.1 \mathrm{~L}\) to \(0.25 \mathrm{~L}\) against a constant external pressure of 2 bar. The work done by the gas is:
1. \(30 ~\mathrm {J} \)
2. \(-30 ~\mathrm{J} \)
3. \(5~ \mathrm{kJ}\)
4. \(25~ \mathrm{J}\)
A process among the following shows decrease in entropy is :
1. \(2 \text H \left(g\right)\rightarrow\text H_{2} \left(g\right)\)
2. Evaporation of water
3. Expansion of a gas at a constant temperature
4. Sublimation of solid to gas