Two concentric circular coils, one of small radius \({r_1}\) and the other of large radius \({r_2},\) such that \({r_1<<r_2},\)  are placed co-axially with centres coinciding. The mutual inductance of the arrangement is:
1. \(\dfrac{\mu_0\pi r_1^2}{3r_2}\)

2. \(\dfrac{2\mu_0\pi r_1^2}{r_2}\)
3. \(\dfrac{\mu_0\pi r_1^2}{r_2}\)
4. \(\dfrac{\mu_0\pi r_1^2}{2r_2}\)

Subtopic:  Mutual Inductance |
 69%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The dimensions of mutual inductance \((M)\) are:
1. \(\left[M^2LT^{-2}A^{-2}\right]\)
2. \(\left[MLT^{-2}A^{2}\right]\)
3. \(\left[M^{2}L^{2}T^{-2}A^{2}\right]\)
4. \(\left[ML^{2}T^{-2}A^{-2}\right]\)

Subtopic:  Mutual Inductance |
 73%
From NCERT
NEET - 2022
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A small solenoid is kept inside a much larger solenoid, with their axes parallel to each other. The small solenoid has a cross-sectional radius \(r_1,\) length \(l_1\) and the total number of turns \(N_1.\) The corresponding quantities for the larger solenoid are: \(r_2,~ l_2,~ N_2\) respectively.
Their mutual inductance is (nearly) given by:
1. \(\frac{\mu_0\pi r^2_1N_1N_2}{l_2}\) 2. \(\frac{\mu_0\pi r^2_1N_1N_2}{\sqrt{l_1l_2}}\)
3. \(\frac{\mu_0\pi r^2_1N_1N_2}{l_1}\) 4. \(\frac{\mu_0~\pi r_1r_2N_1N_2}{\sqrt{l_1}}\)
Subtopic:  Mutual Inductance |
 62%
From NCERT
Please attempt this question first.
Hints
Please attempt this question first.

advertisementadvertisement