Two concentric circular coils, one of small radius \({r_1}\) and the other of large radius \({r_2},\) such that \({r_1<<r_2},\) are placed co-axially with centres coinciding. The mutual inductance of the arrangement is:
1. \(\dfrac{\mu_0\pi r_1^2}{3r_2}\)
2. \(\dfrac{2\mu_0\pi r_1^2}{r_2}\)
3. \(\dfrac{\mu_0\pi r_1^2}{r_2}\)
4. \(\dfrac{\mu_0\pi r_1^2}{2r_2}\)
The dimensions of mutual inductance \((M)\) are:
1. \(\left[M^2LT^{-2}A^{-2}\right]\)
2. \(\left[MLT^{-2}A^{2}\right]\)
3. \(\left[M^{2}L^{2}T^{-2}A^{2}\right]\)
4. \(\left[ML^{2}T^{-2}A^{-2}\right]\)
1. | \(\frac{\mu_0\pi r^2_1N_1N_2}{l_2}\) | 2. | \(\frac{\mu_0\pi r^2_1N_1N_2}{\sqrt{l_1l_2}}\) |
3. | \(\frac{\mu_0\pi r^2_1N_1N_2}{l_1}\) | 4. | \(\frac{\mu_0~\pi r_1r_2N_1N_2}{\sqrt{l_1}}\) |