The maximum kinetic energy of photoelectron emitted from the surface of work function f due to incidence of light of frequency n is E. If the frequency of incident light is doubled, then maximum kinetic of emitted photon will be

1.  2E

2.  2E - f

3.  2E + f

4.  2E + 2f

Subtopic:  Einstein's Photoelectric Equation |
 51%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

What is the de-Broglie wavelength associated with an electron accelerated through a voltage of \(900\) V?
1. \(0.31~\mathring{A}\)
2. \(0.41~\mathring{A}\)
3. \(0.5~\mathring{A}\)
4. \(0.16~\mathring{A}\)

Subtopic:  De-broglie Wavelength |
 74%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

What is the de-Broglie wavelength of a neutron in thermal equilibrium with heavy water at a temperature \(T\) (Kelvin) and mass \(m?\)
1. \(\frac{h}{\sqrt{m k T}}\) 2. \(\frac{h}{\sqrt{3 m k T}}\)
3. \(\frac{2 h}{\sqrt{3 m k T}}\) 4. \(\frac{2 h}{\sqrt{m k T}}\)
Subtopic:  De-broglie Wavelength |
 80%
From NCERT
NEET - 2017
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

If an electron of mass \(m\) with a de-Broglie wavelength of \(\lambda\) falls on the target in an \(X\text-\)ray tube, the cut-off wavelength \((\lambda_0)\) of the emitted \(X\text-\)ray will be:
1. \(\lambda_0 = \frac{2mc\lambda^2}{h}\)
2. \(\lambda_0 = \frac{2h}{mc}\)
3. \(\lambda_0 = \frac{2m^2c^2\lambda^3}{h^2}\)
4. \(\lambda_0 = \lambda\)

Subtopic:  De-broglie Wavelength |
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Photons with energy \(5\) eV are incident on a cathode \(C\) in a photoelectric cell. The maximum energy of emitted photoelectrons is \(2\) eV. When photons of energy \(6\) eV are incident on \(C\), no photoelectron will reach the anode \(A\), if the stopping potential of \(A\) relative to \(C\) is:
1. \(+3\) V
2. \(+4\) V
3. \(-1\) V
4. \(-3\) V

Subtopic:  Einstein's Photoelectric Equation |
 52%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

When a metallic surface is illuminated with radiation of wavelength λ, the stopping potential is V. If the same surface is illuminated with radiation of wavelength 2λ, the stopping potential is V4 .The threshold wavelength for metallic surface is:

1. 5λ               
2. 52λ
3. 3λ               
4. 4λ

Subtopic:  Photoelectric Effect: Experiment |
 65%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

An electron of mass m and a photon have the same energy E. Find the ratio of de-Broglie wavelength associated with the electron to that associated with the photon. (c is the velocity of light)

1. E2m1/2

2. c2mE1/2

3. 1c2mE1/2

4. 1cE2m1/2

 

Subtopic:  De-broglie Wavelength |
 59%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A radiation of energy 'E' falls normally on a perfectly reflecting surface. The momentum transferred to the surface is (c=velocity of light)

1. E/c

2. 2E/c

3. 2E/c2

4. E/c2

Subtopic:  Particle Nature of Light |
 60%
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

A certain metallic surface is illuminated with monochromatic light of wavelength \(\lambda\). The stopping potential for photoelectric current for this light is \(3V_0\). If the same surface is illuminated with light of wavelength \(2\lambda\), the stopping potential is \(V_0\). The photoelectric effect's threshold wavelength for this surface is?
1. \(6\lambda\)
2. \(4\lambda\)
3. \(\dfrac{\lambda}{4}\)
4. \(\dfrac{\lambda}{6}\)
Subtopic:  Einstein's Photoelectric Equation |
 77%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Which of the following figures represents the variation of the particle momentum and the associated de-Broglie wavelength?

1. 2.
3.
4.
Subtopic:  De-broglie Wavelength |
 86%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch