An electron falls through a distance of \(1.5~\text{cm}\) in a uniform electric field of magnitude \(2\times10^4~\text{N/C}\) [figure (a)]. The direction of the field is reversed keeping its magnitude unchanged and a proton falls through the same distance [figure (b)]. If \(t_e\) and \(t_p\) are the time of fall for electron and proton respectively, then:
1. \(t_e=t_p\)
2. \(t_e>t_p\)
3. \(t_e<t_p\)
4. none of these
1. | \(\dfrac{2}{9}\) | 2. | \(\dfrac{4}{9}\) |
3. | \(\dfrac{9}{2}\) | 4. | \(\dfrac{9}{4}\) |
1. \(E_A>E_B>E_C\)
2. \(E_A=E_B=E_C\)
3. \(E_A=E_C>E_B\)
4. \(E_A=E_C<E_B\)
1. | I, III | 2. | II |
3. | I, II, III | 4. | none of I, II, III |
1. | \(\dfrac{E_s}{2}=\dfrac{E_C}{3}\) | 2. | \(\dfrac{E_s}{3}=\dfrac{E_C}{2}\) |
3. | \(\dfrac{E_s}{\sqrt2}=\dfrac{E_C}{\sqrt3}\) | 4. | \(\dfrac{E_s}{\sqrt3}=\dfrac{E_C}{\sqrt2}\) |
1. | zero | 2. | \(4\dfrac{kq}{a^2}\) |
3. | \(2\dfrac{kq}{a^2}\) | 4. | \(2\sqrt2\dfrac{kq}{a^2}\) |