Two astronauts are floating in gravitation-free space after having lost contact with their spaceship. The two will:
1. | move towards each other. |
2. | move away from each other. |
3. | become stationary. |
4. | keep floating at the same distance between them. |
Two particles of mass \(m\) and \(4m\) are separated by a distance \(r.\) Their neutral point is at:
1. \(\frac{r}{2}~\text{from}~m\)
2. \(\frac{r}{3}~\text{from}~4m\)
3. \(\frac{r}{3}~\text{from}~m\)
4. \(\frac{r}{4}~\text{from}~4m\)
Three identical point masses, each of mass \(1~\text{kg}\) lie at three points \((0,0),\) \((0,0.2~\text{m}),\) \((0.2~\text{m}, 0).\) The net gravitational force on the mass at the origin is:
1. \(6.67\times 10^{-9}(\hat i +\hat j)~\text{N}\)
2. \(1.67\times 10^{-9}(\hat i +\hat j) ~\text{N}\)
3. \(1.67\times 10^{-9}(\hat i -\hat j) ~\text{N}\)
4. \(1.67\times 10^{-9}(-\hat i -\hat j) ~\text{N}\)
Two spheres of masses \(m\) and \(M\) are situated in air and the gravitational force between them is \(F.\) If the space around the masses is filled with a liquid of specific density \(3,\) the gravitational force will become:
1. \(3F\)
2. \(F\)
3. \(F/3\)
4. \(F/9\)
A planet of mass \(m\) is moving around a star of mass \(M\) and radius \(R\) in a circular orbit of radius \(r.\) The star abruptly shrinks to half its radius without any loss of mass. What change will be there in the orbit of the planet?
1. | The planet will escape from the Star. |
2. | The radius of the orbit will increase. |
3. | The radius of the orbit will decrease. |
4. | The radius of the orbit will not change. |
The law of gravitation states that the gravitational force between two bodies of mass \(m_1\) \(m_2\) is given by:
\(F=\dfrac{Gm_1m_2}{r^2}\)
\(G\) (gravitational constant) \(=7\times 10^{-11}~\text{N-m}^2\text{kg}^{-2}\)
\(r\) (distance between the two bodies) in the case of the Earth and Moon \(=4\times 10^8~\text{m}\)
\(m_1~(\text{Earth})=6\times 10^{24}~\text{kg}\)
\(m_2~(\text{Moon})=7\times 10^{22}~\text{kg}\)
What is the gravitational force between the Earth and the Moon?
1. \(1.8375 \times 10^{19}~\text{N}\)
2. \(1.8375 \times 10^{20}~\text{N}\)
3. \(1.8375 \times 10^{25}~\text{N}\)
4. \(1.8375 \times 10^{26}~\text{N}\)
(a) | The universal law of gravitation is an assumption or hypothesis. |
(b) | The universal law of gravitation can be proved. |
(c) | The universal law of gravitation can be verified. |