A satellite of mass \(m\) is orbiting the earth (of radius \(R\)) at a height \(h\) from its surface. What is the total energy of the satellite in terms of \(g_0?\)
(\(g_0\) is the value of acceleration due to gravity at the earth's surface)
1. | \(\dfrac{mg_0R^2}{2(R+h)}\) | 2. | \(-\dfrac{mg_0R^2}{2(R+h)}\) |
3. | \(\dfrac{2mg_0R^2}{(R+h)}\) | 4. | \(-\dfrac{2mg_0R^2}{(R+h)}\) |
A body of mass \(m\) is taken from the Earth’s surface to the height equal to twice the radius \((R)\) of the Earth. The change in potential energy of the body will be:
1. | \(\frac{2}{3}mgR\) | 2. | \(3mgR\) |
3. | \(\frac{1}{3}mgR\) | 4. | \(2mgR\) |
1. | \(\frac{S}{2},\frac{\sqrt{3gS}}{2}\) | 2. | \(\frac{S}{4}, \sqrt{\frac{3gS}{2}}\) |
3. | \(\frac{S}{4},\frac{3gS}{2}\) | 4. | \(\frac{S}{4},\frac{\sqrt{3gS}}{3}\) |
If a particle is dropped from a height \(h = 3R\) from the Earth's surface, the speed with which the particle will strike the ground is:
1. \(\sqrt{3gR}\)
2. \(\sqrt{2gR}\)
3. \(\sqrt{1.5gR}\)
4. \(\sqrt{gR}\)
Given below are two statements:
Assertion (A): | When a body is raised from the surface of the earth, its potential energy increases. |
Reason (R): | The potential energy of a body on the surface of the earth is zero. |
1. | Both (A) and (R) are True and (R) is the correct explanation of (A). |
2. | Both (A) and (R) are True but (R) is not the correct explanation of (A). |
3. | (A) is True but (R) is False. |
4. | Both (A) and (R) are False. |
1. | \(U > mgh\) |
2. | \(U < mgh\) |
3. | \(U = mgh\) |
4. | \(h,\) considered relative to the radius of the earth. | any of the above may be true depending on the value of