A beam of light from a source \(L\) is incident normally on a plane mirror fixed at a certain distance \(x\) from the source. The beam is reflected back as a spot on a scale placed just above the source \(L.\) When the mirror is rotated through a small angle \(\theta,\) the spot of the light is found to move through a distance \(y\) on the scale. The angle \(\theta\) is given by:
1. | \(\dfrac{y}{x}\) | 2. | \(\dfrac{x}{2y}\) |
3. | \(\dfrac{x}{y}\) | 4. | \(\dfrac{y}{2x}\) |
An object is placed on the principal axis of a concave mirror at a distance of \(1.5f\) (\(f\) is the focal length). The image will be at:
1. | \(-3f\) | 2. | \(1.5f\) |
3. | \(-1.5f\) | 4. | \(3f\) |
Column 1 | Column 2 | ||
A. | \(m= -2\) | I. | convex mirror |
B. | \(m= -\frac{1}{2}\) | II. | concave mirror |
C. | \(m= +2\) | III. | real Image |
D. | \(m= +\frac{1}{2}\) | IV. | virtual Image |
A | B | C | D | |
1. | I & III | I & IV | I & II | III & IV |
2. | I & IV | II & III | II & IV | II & III |
3. | III & IV | II & IV | II & III | I & IV |
4. | II & III | II & III | II & IV | I & IV |
1. | \(120^\circ\) | 2. | \(30^\circ\) |
3. | \(60^\circ\) | 4. | \(90^\circ\) |
A rod of length \(10~\text{cm}\) lies along the principal axis of a concave mirror of focal length \(10~\text{cm}\) in such a way that its end closer to the pole is \(20~\text{cm}\) away from the mirror. The length of the image is:
1. \(15~\text{cm}\)
2. \(2.5~\text{cm}\)
3. \(5~\text{cm}\)
4. \(10~\text{cm}\)
A beam of light is incident vertically on a glass slab of thickness \(1~\text{cm},\) and refractive index \(1.5.\) A fraction \(A\) is reflected from the front surface while another fraction \(B\) enters the slab and emerges after reflection from the back surface. The time delay between them is:
1. | \(10^{-10}~\text{s}\) | 2. | \(5\times 10^{-10}~\text{s}\) |
3. | \(10^{-11}~\text{s}\) | 4. | \(5\times 10^{-11}~\text{s}\) |
1. | \(\sin ^{-1}\left(\frac{10 t_1}{t_2}\right) \) | 2. | \(\sin ^{-1}\left(\frac{ t_2}{t_1}\right) \) |
3. | \(\sin ^{-1}\left(\frac{10 t_2}{t_1}\right) \) | 4. | \(\sin ^{-1}\left(\frac{ t_1}{10t_2}\right) \) |
1. | yellow, orange, and red |
2. | blue, green, and yellow |
3. | orange, red, and violet |
4. | all of the above |
1. | \(\text{tan}^{-1}(0.750)\) | 2. | \(\text{sin}^{-1}(0.500)\) |
3. | \(\text{sin}^{-1}(0.750)\) | 4. | \(\text{tan}^{-1}(0.500)\) |