The main difference between the phenomena of interference and diffraction is that:
1. | diffraction is caused by reflected waves from a source whereas interference is caused due to the refraction of waves from a source. |
2. | diffraction is caused due to the interaction of waves derived from the same source, whereas interference is the bending of light from the same wavefront. |
3. | diffraction is caused due to the interaction of light from the same wavefront, whereas the interference is the interaction of two waves derived from the same source. |
4. | diffraction is caused due to the interaction of light from the same wavefront whereas interference is the interaction of waves from two isolated sources. |
1. | \(0.2~\text{mm}\) | 2. | \(0.1~\text{mm}\) |
3. | \(0.5~\text{mm}\) | 4. | \(0.02~\text{mm}\) |
Two slits are made one millimetre apart and the screen is placed one metre away. What should the width of each slit be to obtain \(10\) maxima of the double-slit pattern within the central maximum of the single-slit pattern?
1. \(2~\text{mm}\)
2. \(0.2~\text{mm}\)
3. \(0.02~\text{mm}\)
4. \(20~\text{mm}\)
Two coherent sources separated by distance \(d\) are radiating in a phase having wavelength \(\lambda.\) A detector moves in a big circle around the two sources in the plane of the two sources. The angular position of \(n=4\) interference maxima is given as:
1. \(\text{sin}^{-1}\left(\frac{n\lambda}{d}\right )\)
2. \(\text{cos}^{-1}\left(\frac{4\lambda}{d}\right)\)
3. \(\text{tan}^{-1}\left(\frac{d}{4\lambda}\right)\)
4. \(\text{cos}^{-1}\left(\frac{\lambda}{4d}\right)\)