Five identical polaroids are placed coaxially with \(45^{\circ}\) angular separation between pass axes of adjacent polaroids as shown in the figure. (\(I_0\): Intensity of unpolarized light)
The intensity of light, \(I\),
emerging out of the \(5\)th polaroid is:
1. | \(\dfrac{I_0}{4}\) | 2. | \(\dfrac{I_0}{8}\) |
3. | \(\dfrac{I_0}{16}\) | 4. | \(\dfrac{I_0}{32}\) |
In Young's double-slit experiment, the intensity of light at a point on the screen where the path difference is \(\lambda\) is \(K\), (\(\lambda\) being the wavelength of light used). The intensity at a point where the path difference is \(\frac{\lambda}{4}\) will be:
1. \(K\)
2. \(\frac{K}{4}\)
3. \(\frac{K}{2}\)
4. zero
A diffraction pattern is observed using a beam of red light. What will happen if the red light is replaced by the blue light?
1. | No change takes place. |
2. | Diffraction bands become narrower. |
3. | Diffraction bands become broader. |
4. | Diffraction pattern disappears. |
Which of the following statements indicates that light waves are transverse?
1. | Light waves can travel in a vacuum. |
2. | Light waves show interference. |
3. | Light waves can be polarized. |
4. | Light waves can be diffracted. |
Two coherent sources of light interfere and produce fringe patterns on a screen. For the central maximum, the phase difference between the two waves will be:
1. | zero | 2. | \(\pi\) |
3. | \(\dfrac{3\pi}{2}\) | 4. | \(\dfrac{\pi}{2}\) |
A beam of light of \(\lambda = 600~\text{nm}\) from a distant source falls on a single slit \(1~\text{mm}\) wide and the resulting diffraction pattern is observed on a screen \(2~\text{m}\) away. The distance between the first dark fringes on either side of the central bright fringe is:
1. \(1.2~\text{cm}\)
2. \(1.2~\text{mm}\)
3. \(2.4~\text{cm}\)
4. \(2.4~\text{mm}\)
1. | \(\theta\) increases. |
2. | \(\theta\) remains unchanged. |
3. | \(\theta\) decreases. |
4. | \(\theta\) increases or decreases depending on the intensity of light. |
Huygens' wave theory allows us to know the:
1. | wavelength of the wave. |
2. | velocity of the wave. |
3. | amplitude of the wave. |
4. | propagation of the wavefront. |