1. | \(25.8\) MeV | 2. | \(23.6\) MeV |
3. | \(19.2\) MeV | 4. | \(30.2\) MeV |
A nucleus with mass number \(240\) breaks into fragments each of mass number \(120.\) The binding energy per nucleon of unfragmented nuclei is \(7.6~\text{MeV}\) while that of fragments is \(8.5~\text{MeV}.\) The total gain in the binding energy in the process is:
1. \(804~\text{MeV}\)
2. \(216~\text{MeV}\)
3. \(0.9~\text{MeV}\)
4. \(9.4~\text{MeV}\)
1. | decrease continuously with mass number. |
2. | first decreases and then increases with an increase in mass number. |
3. | first increases and then decreases with an increase in mass number. |
4. | increases continuously with mass number. |
A. | slow neutrons can cause fission in \(\mathrm U_{92}^{235}\) than fast neutrons. |
B. | \(\text{α-rays}\) are helium nuclei. |
C. | \(\text{β-rays}\) are fast-moving electrons or positrons. |
D. | \(\gamma\text-\text{rays}\) are electromagnetic radiations of wavelengths larger than \(X\text-\)rays. |
1. | A, B, and C only | 2. | A, B, and D only |
3. | A and B only | 4. | C and D only |
1. | \({}_{34}^{74}\mathrm{Se}, {}_{31}^{71}\mathrm{Ca}\) | 2. | \({}_{42}^{92}\mathrm{Mo}, {}_{40}^{92}\mathrm{Zr}\) |
3. | \({}_{38}^{81}\mathrm{Sr}, {}_{38}^{86}\mathrm{Sr}\) | 4. | \({}_{20}^{40}\mathrm{Ca}, {}_{16}^{32}\mathrm{S}\) |
1. | \(M(A, Z)=ZM_p+(A-Z) M_n-B E / c^2\) |
2. | \({M}({A}, {Z})={ZM}_{p}+({A}-{Z}) {M}_{n}+{BE}\) |
3. | \(M(A, Z)=ZM_p+(A-Z) M_n-B E\) |
4. | \({M}({A}, {Z})={ZM}_{p}+({A}-{Z}) {M}_{n}+{BE/c}^2 \) |
The Binding energy per nucleon of \(^{7}_{3}\mathrm{Li}\) and \(^{4}_{2}\mathrm{He}\) nucleon are \(5.60~\text{MeV}\) and \(7.06~\text{MeV}\), respectively. In the nuclear reaction \(^{7}_{3}\mathrm{Li} + ^{1}_{1}\mathrm{H} \rightarrow ^{4}_{2}\mathrm{He} + ^{4}_{2}\mathrm{He} +Q\), the value of energy \(Q\) released is:
1. \(19.6~\text{MeV}\)
2. \(-2.4~\text{MeV}\)
3. \(8.4~\text{MeV}\)
4. \(17.3~\text{MeV}\)