If in a \(\mathrm{p\text{-}n}\) junction, a square input signal of \(10~\text{V}\) is applied as shown,
then the output across \(R_L\) will be:
1. | 2. | ||
3. | 4. |
The given circuit has two ideal diodes connected as shown in the figure below. The current flowing through the resistance \(R_1\) will be:
1. \(2.5~\text{A}\)
2. \(10.0~\text{A}\)
3. \(1.43~\text{A}\)
4. \(3.13~\text{A}\)
In the given figure, a diode \(D\) is connected to an external resistance \(R = 100~\Omega\) and an EMF of \(3.5~\text{V}\). If the barrier potential developed across the diode is \(0.5~\text{V}\), the current in the circuit will be:
1. \(30~\text{mA}\)
2. \(40~\text{mA}\)
3. \(20~\text{mA}\)
4. \(35~\text{mA}\)
The barrier potential of a \(\mathrm{p\text-n}\) junction diode does not depend on:
1. | diode design | 2. | temperature |
3. | forward bias | 4. | doping density |
Two ideal diodes are connected to a battery as shown in the circuit. The current supplied by the battery is:
1. | \(0.75~\text{A}\) | 2. | zero |
3. | \(0.25~\text{A}\) | 4. | \(0.5~\text{A}\) |
For the given circuit of the \(\mathrm{p\text-n}\) junction diode, which of the following statements is correct?
1. | In F.B. the voltage across \(R\) is \(V.\) |
2. | In R.B. the voltage across \(R\) is \(V.\) |
3. | In F.B. the voltage across \(R\) is \(2V.\) |
4. | In R.B. the voltage across \(R\) is \(2V.\) |
1. | \(V_B\) increases, \(x\) decreases | 2. | \(V_B\) decreases, \(x\) increases |
3. | \(V_B\) increases, \(x\) increases | 4. | \(V_B\) decreases, \(x\) decreases |
1. | \(2~\text A\) and zero | 2. | \(3~\text A\) and \(2~\text A\) |
3. | \(2~\text A\) and \(3~\text A\) | 4. | Zero and \(2~\text A\) |
Which one of the following represents the forward bias diode?
1. | |
2. | |
3. | |
4. |
Consider the junction diode as an ideal. The value of current flowing through \(AB\) is:
1. \(10^{-2}~\text{A}\)
2. \(10^{-1}~\text{A}\)
3. \(10^{-3}~\text{A}\)
4. \(0~\text{A}\)