The electric field of an electromagnetic wave
in free space is given by :
, where t and x
are in seconds and metres respectively. It can
be inferred that :-
(a) The wavelength is 188.4 m
(b) The wave number k is 0.33 rad/m
(c) The wave amplitude is 10 V/m
(d) The wave is propagating along +x direction
Which one of the following pairs of statements
is correct :-
1. (a) and (b)
2. (b) and (c)
3. (a) and (c)
4. (c) and (d)
In an electric circuit, there is a capacitor of reactance \(100~\Omega\) connected across the source of \(220~\text{V}\). The rms value of displacement current will be:
1. \(2.2~\text{A}\)
2. \(0.22~\text{A}\)
3. \(4.2~\text{A}\)
4. \(2.4~\text{A}\)
Displacement current is the same as:
1. | Conduction current due to the flow of free electrons |
2. | Conduction current due to the flow of positive ions |
3. | Conduction current due to the flow of both positive and negative free charge carriers |
4. | It is not a conduction current but is caused by the time-varying electric field |
The charge of a parallel plate capacitor is varying as; \(q = q_{0} \sin\omega t\). The magnitude of displacement current through the capacitor is:
(the plate Area = \(A\), separation of plates = \(d\))
1. \(q_{0}\cos \left(\omega t \right)\)
2. \(q_{0} \omega \sin\omega t\)
3. \(q_{0} \omega \cos \omega t\)
4. \(\frac{q_{0} A \omega}{d} \cos \omega t\)
The rate of change of the voltage of a parallel plate capacitor if the instantaneous displacement current of 1 A is established between the two plates of a 1 F parallel plate capacitor:
1.
2. 10 V/s
3.
4.
The relation between electric field E and magnetic field induction B in electromagnetic waves is given by:
(1)
(2) E = cB
(3) E =
(4)
In a plane EM wave, the electric field oscillates sinusoidally at a frequency of \(2.5\times 10^{10}~\text{Hz}\) and amplitude \(480\) V/m. The amplitude of the oscillating magnetic field will be:
1. \(1.52\times10^{-8}~\text{Wb/m}^2\)
2. \(1.52\times10^{-7}~\text{Wb/m}^2\)
3. \(1.6\times10^{-6}~\text{Wb/m}^2\)
4. \(1.6\times10^{-7}~\text{Wb/m}^2\)
The intensity of visible radiation at a distance of \(1\) m from a bulb of \(100\) W which converts only \(5\%\) of its power into light, is:
1. \(0.4\) W/m2
2. \(0.5\) W/m2
3. \(0.1\) W/m2
4. \(0.01\) W/m2
On an EM wave, the amplitude of electric and magnetic fields are 100 v/m and 0.265 A/m. The maximum energy flow is
(1) 26.5 (2) 46.7
(3) 66.5 (4) 86.5
The most penetrating radiation out of the following is:
(1) X-rays (2) -rays (3) -rays (4) -rays