If an electron in a hydrogen atom jumps from the 3rd orbit, to the 2nd orbit, it emits a photon of wavelength . When it jumps from the 4th orbit to the 3rd orbit, the corresponding wavelength of the photon will be
(1)
(2)
(3)
(4)
Whose atomic model describes electrons being embedded in a gel of positive charge?
1. | Dalton's model |
2. | Bohr's model |
3. | Thomson's model |
4. | Rutherford's model |
The ratio of longest wavelengths corresponding to Lyman and Balmer series in hydrogen spectrum is
(1)5/27
(2)3/23
(3)7/29
(4)9/31
Out of the following which one is not a possible energy for a photon to be emitted by hydrogen atom according to Bohr's atomic model?
(1)1.9eV
(2)11.1eV
(3)13.6eV
(4)0.65eV
The electron in the hydrogen atom jumps from excited state to its ground state and the photons thus emitted irradiate a photosensitive material. If the work function of the material is the stopping potential is estimated to be (the energy of the electron in the nth state )
1. 2.
3. 4.
The ionization energy of the electron in the hydrogen atom in its ground state is 13.6 eV. The atoms are excited to higher energy levels to emit radiations of 6 wavelengths. Maximum wavelength of emitted radiation corresponds to the transition between
(a) n=3 to n=2 states
(b) n=3 to n=1 states
(c) n=2 to n=1 states
(d) n=4 to n=3 states
The ratio of specific charge of an -particle to that of a proton is
(1) 2 : 1
(2) 1 : 1
(3) 1 : 2
(4) 1 : 3
The Rutherford -particle experiment shows that most of the -particles pass through almost unscattered while some are scattered through large angles. What information does it give about the structure of the atom?
1. | Atom is hollow. |
2. | The whole mass of the atom is concentrated in a small center called the nucleus. |
3. | Nucleus is positively charged. |
4. | All of the above |
An electron has a mass of . It revolves round the nucleus in a circular orbit of radius metre at a speed of . The magnitude of its linear momentum in this motion is
(a) kg-m/s (b) kg-m/s
(c) kg-m/s (d) kg-m/s
An electron jumps from the 4th orbit to the 2nd orbit of hydrogen atom. Given the Rydberg's constant R = . The frequency in Hz of the emitted radiation will be
(a) (b)
(c) (d)