One kilogram of ice at \(0^\circ \text{C}\) is mixed with one kilogram of water at \(80^\circ \text{C}.\) The final temperature of the mixture will be: (Take: Specific heat of water = \(4200~\text{J kg}^{-1}\text{K}^{-1},\) latent heat of ice\(=336~\text{kJ kg}^{-1}\))
1. | \(0^\circ \text{C}\) | 2. | \(50^\circ \text{C}\) |
3. | \(40^\circ \text{C}\) | 4. | \(60^\circ \text{C}\) |
A black body at temperature 300K radiates heat at the rate E. If its temperature is increased by 600K, the rate of radiation will increase to -
1. 16E
2. 64E
3. 81E
4. 256E
Heat capacity is equal to the product of:
1. mass and gas constant
2. mass and specific heat
3. latent heat and volume of water
4. mass and Avogadro number
When a block of iron floats in Hg at , a fraction of its volumen= is submerged, while at temperature of a fraction is seen to be submersed. If the coefficient of volume expansion of iron is and that of mercury is , then the ratio can be expressed as:
(1)
(2)
(3)
(4)
Two identical bodies are made of a material whose heat capacity increases with temperature. One of these is at \(100^{\circ} \mathrm{C}\), while the other one is at \(0^{\circ} \mathrm{C}\). If the two bodies are brought into contact, then assuming no heat loss, the final common temperature will be:
1. | \(50^{\circ} \mathrm{C}\) |
2. | more than \(50^{\circ} \mathrm{C}\) |
3. | less than \(50^{\circ} \mathrm{C}\) but greater than \(0^{\circ} \mathrm{C}\) |
4. | \(0^{\circ} \mathrm{C}\) |
A piece of ice falls from a height h so that it melts completely. Only one-quarter of the heat produced is absorbed by the ice and all energy of ice gets converted into heat during its fall. The value of h is [Latent heat of ice is 3.4x105J/Kg and g=10N/Kg]
1. 544 km
2. 136 km
3. 68 km
4. 34 km
The value of the coefficient of volume expansion of glycerin is \(5\times10^{-4}\) K-1. The fractional change in the density of glycerin for a temperature increase of \(40^\circ \mathrm{C}\) will be:
1. | \(0.015\) | 2. | \(0.020\) |
3. | \(0.025\) | 4. | \(0.010\) |