A wire loop is rotated in a magnetic field. The frequency of change of direction of the induced emf is

(1) once per revolution

(2) twice per revolution

(3) four times per revolution

(4) six times per revolution




Subtopic:  Faraday's Law & Lenz Law |
 81%
From NCERT
NEET - 2013
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A coil of resistance 400Ω is placed in a magnetic field. If the magnetic flux ϕ Wb linked with the coil varies with time t (sec) as ϕ=50t2+4.

The current in the coil at t=2s is 

(1) 0.5A                                           

(2) 0.1A

(3) 2A                                               

(4) 1A

Subtopic:  Faraday's Law & Lenz Law |
 90%
From NCERT
NEET - 2012
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A conducting circular loop is placed in a uniform magnetic field 0.04 T with its plane perpendicular to the magnetic field. The radius of the loop starts shrinking at 2 mm/s. The induced emf in the loop when the radius is 2 cm is

1. 3.2 πμV                                      2. 4.8 πμV

3. 0.8 πμV                                      4. 1.6 πμV

Subtopic:  Faraday's Law & Lenz Law |
 73%
From NCERT
NEET - 2009
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

 

a long solenoid has 500 turns. When a current of 2 A is passed through it, the resulting magnetic flux linked with each turn of the solenoid is 4×10-3 Wh.  The self-inductance of the solenoid is 

(a) 2.5 h

(b) 2.0 H 

(c) 1.0 H

(d) 4.0 H

 

Subtopic:  Self - Inductance |
 78%
From NCERT
NEET - 2008
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

 

A circular disc of radius 0.2 m is placed in a uniform magnetic field of induction 1π Wbm2 in such a way that its axis makes an angle of 60° with B. The magnetic flux linked with the disc is 

(a) 0.02 Wb

(b) 0.06 Wb

(c) 0.08 Wb

(d) 0.01 Wb

Subtopic:  Magnetic Flux |
 88%
From NCERT
NEET - 2008
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A coil having number of turns \(N\) and cross-sectional area \(A\) is rotated in a uniform magnetic field \(B\) with an angular velocity \(\omega\). The maximum value of the emf induced in it is:
1. \(\frac{NBA}{\omega}\)
2. \(NBAω\)
3. \(\frac{NBA}{\omega^{2}}\)
4. \(NBAω^{2}\)

Subtopic:  Faraday's Law & Lenz Law |
 89%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A current-carrying wire is placed below a coil in its plane, with current flowing as shown.

If the current increases –

     

1. no current will be induced in the coil 

2. an anticlockwise current will be induced in the coil 

3. a clockwise current will be induced in the coil 

4. the current induced in the coil will be first anticlockwise and then clockwise

Subtopic:  Faraday's Law & Lenz Law |
 62%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Average energy stored in a pure inductance L when a current i flows through it, is

1.  Li2                           

2.  2Li2

3.  Li2/4                       

4.  Li2/2

Subtopic:  Self - Inductance |
 88%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A small magnet is along the axis of a coil and its distance from the coil is 80 cm. In this position the flux linked with the coil are 4 × 105 weber turns. If the coil is displaced 40 cm towards the magnet in 0.08 second, then the induced emf produced in the coil will be -

1.  0.5 mV                       

2.  1 mV 

3.  7 mV                           

4.  3.5 mV

Subtopic:  Faraday's Law & Lenz Law |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

When the current in a certain inductor coil is 5.0 A and is increasing at the rate of 10.0 A/s, the potential difference across the coil is 140V. When the current is 5.0 A and decreasing at the rate of 10.0 A/s, the potential difference is 60V. The self-inductance of the coil is –

1.  2H                 

2.  4H

3.  8H                 

4.  12H

Subtopic:  Self - Inductance |
 59%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch