A conducting circular loop is placed in a uniform magnetic field with its plane perpendicular to the magnetic field. The radius of the loop starts shrinking at The induced emf in the loop when the radius is 2 cm is
1. 2.
3. 4.
a long solenoid has 500 turns. When a current of 2 A is passed through it, the resulting magnetic flux linked with each turn of the solenoid is Wh. The self-inductance of the solenoid is
(a) 2.5 h
(b) 2.0 H
(c) 1.0 H
(d) 4.0 H
A circular disc of radius 0.2 m is placed in a uniform magnetic field of induction in such a way that its axis makes an angle of with . The magnetic flux linked with the disc is
(a) 0.02 Wb
(b) 0.06 Wb
(c) 0.08 Wb
(d) 0.01 Wb
A coil having number of turns \(N\) and cross-sectional area \(A\) is rotated in a uniform magnetic field \(B\) with an angular velocity \(\omega\). The maximum value of the emf induced in it is:
1. \(\frac{NBA}{\omega}\)
2. \(NBAω\)
3. \(\frac{NBA}{\omega^{2}}\)
4. \(NBAω^{2}\)
A current-carrying wire is placed below a coil in its plane, with current flowing as shown.
If the current increases –
1. no current will be induced in the coil
2. an anticlockwise current will be induced in the coil
3. a clockwise current will be induced in the coil
4. the current induced in the coil will be first anticlockwise and then clockwise
Average energy stored in a pure inductance L when a current i flows through it, is
1.
2.
3.
4.
A small magnet is along the axis of a coil and its distance from the coil is 80 cm. In this position the flux linked with the coil are weber turns. If the coil is displaced 40 cm towards the magnet in 0.08 second, then the induced emf produced in the coil will be -
1. 0.5 mV
2. 1 mV
3. 7 mV
4. 3.5 mV
When the current in a certain inductor coil is 5.0 A and is increasing at the rate of 10.0 A/s, the potential difference across the coil is 140V. When the current is 5.0 A and decreasing at the rate of 10.0 A/s, the potential difference is 60V. The self-inductance of the coil is –
1. 2H
2. 4H
3. 8H
4. 12H
A train is moving at a rate of 72 km/hr on a horizontal plane. If the earth's horizontal component of magnetic field is 0.345 A/m and the angle of dip is 30°, then the potential difference across the two ends of a compartment of length 1.7 m will be-
1.
2.
3.
4.
The magnetic flux through a coil varies with time as . The ratio of emf at t = 3s to t = 0s will be
1. 1 : 9
2. 1 : 6
3. 6 : 1
4. 9 : 1