A part of a long wire carrying a current i is bent into a circle of radius r as shown in the figure. The net magnetic field at the centre O of the circular loop is
(1)
(2)
(3)
(4)
In the figure, what is the magnetic field at the point O
1. 2.
3. 4.
Two thin long parallel wires separated by a distance b are carrying a current i amp each. The magnitude of the force per unit length exerted by one wire on the other is
(1)
(2)
(3)
(4)
A moving coil galvanometer has N number of turns in a coil of effective area A, it carries a current I. The magnetic field B is radial. The torque acting on the coil is
(1)
(2)
(3)
(4)
Three long, straight, and parallel wires carrying currents of \(30\) A, \(10\) A, and \(20\) A in \(P\), \(Q\), and \(R\), respectively, are arranged as shown in the figure. What is the force experienced by a \(10\) cm length of wire \(Q\)?
1. | \(1.4 \times 10^{-4}~\text{N}\) towards the right |
2. | \(1.4 \times 10^{-4}~\text{N}\) towards the left |
3. | \(2.6 \times 10^{-4}~\text{N}\) to the right |
4. | \(2.6 \times 10^{-4}~\text{N}\) to the left |
A non-planar loop of conducting wire carrying a current I is placed as shown in the figure. Each of the straight sections of the loop is of length 2a. The magnetic field due to this loop at the point P (a,0,a) points in the direction
(a) (c)
(b) (d)
A long straight wire along the z-axis carries a current I in the negative z-direction. The magnetic field vector at a point having coordinates (x, y) in the z = 0 plane is :
1.
2.
3.
4.
A circular coil is in y-z plane with centre at origin. The coil is carrying a constant current. Assuming direction of magnetic field at x = – 25 cm to be positive direction of magnetic field, which of the following graphs shows variation of magnetic field along x-axis
The ratio of the magnetic field at the centre of a current carrying circular wire and the magnetic field at the centre of a square coil made from the same length of wire will be
(a) (b)
(c) (d)