A battery of internal resistance \(r\), when connected across \(2~\Omega\) resistor supplies a current of \(4~\text{A}\). When the battery is connected across a \(5~\Omega\) resistor, it supplies a current of \(2~\text{A}\). The value of \(r\) is: 
1. \(2~\Omega\) 2 \(1~\Omega\)
3. \(0.5~\Omega\) 4. zero

Subtopic:  EMF & Terminal Voltage |
 83%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In the circuit shown in figure find the value of r(internal resistance of the cell) for which power transferred by the cell is maximum

                                   

1.  4Ω  

2.  12Ω  

3.  16Ω 

4.   8Ω

Subtopic:  Combination of Resistors |
 71%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

In the circuit shown in the figure below, the current supplied by the battery is:

                                     
1. \(2\) A
2. \(1\) A
3. \(0.5\) A
4. \(0.4\) A

Subtopic:  Wheatstone Bridge |
 89%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

If a resistance coil is made by joining in parallel two resistances each of 20Ω. An emf of 2V is applied across this coil for 100 seconds. The heat produced in the coil is

(1) 20 J

(2) 10 J

(3) 40 J

(4) 80 J

Subtopic:  Heating Effects of Current |
 79%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two battries of emf E1, E2 and internal resistance r1, r2 are connected in parallel.
 The effective emf of the circuit across A and B is

1.  E1r1 + E2r2r1 + r2  

2.  E1r2 + E2r1r1 + r2  

3.  E1r2 + E2r1r1 × r2  

4.  E1r1 + E2r2r1 - r2

Subtopic:  Grouping of Cells |
 78%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The equivalent resistance across AB is :

   

1.  2R

2.  R/2

3.  4R/3

4.  3R/2

Subtopic:  Combination of Resistors |
 76%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The equivalent resistance between points \(A\) and \(B\) in the circuit shown in the figure is:

1. \(6R\) 2. \(4R\)
3. \(2R\) 4. \(R\)
Subtopic:  Combination of Resistors |
 83%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In the circuit shown in the figure, the effective resistance between A and B is:

                            

1.  2Ω

2.  4Ω

3.  6Ω

4.  8Ω

Subtopic:  Combination of Resistors |
 81%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

For the circuit shown in the figure, the value of R must be

                       

1.  3Ω

2.  4Ω

3.  5Ω

4.  6Ω

Subtopic:  Kirchoff's Voltage Law |
 81%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Current I as shown in the circuit will be

                 

1.  10 A

2.  203 A 

3.  23 A  

4.  53 A

 

Subtopic:  Combination of Resistors |
 66%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch